skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 15, 2026

Title: Decoding Rewards in Competitive Games: Inverse Game Theory with Entropy Regularization
Estimating the unknown reward functions driving agents' behavior is a central challenge in inverse games and reinforcement learning. This paper introduces a unified framework for reward function recovery in two-player zero-sum matrix games and Markov games with entropy regularization. Given observed player strategies and actions, we aim to reconstruct the underlying reward functions. This task is challenging due to the inherent ambiguity of inverse problems, the non-uniqueness of feasible rewards, and limited observational data coverage. To address these challenges, we establish reward function identifiability using the quantal response equilibrium (QRE) under linear assumptions. Building on this theoretical foundation, we propose an algorithm to learn reward from observed actions, designed to capture all plausible reward parameters by constructing confidence sets. Our algorithm works in both static and dynamic settings and is adaptable to incorporate other methods, such as Maximum Likelihood Estimation (MLE). We provide strong theoretical guarantees for the reliability and sample-efficiency of our algorithm. Empirical results demonstrate the framework’s effectiveness in accurately recovering reward functions across various scenarios, offering new insights into decision-making in competitive environments.  more » « less
Award ID(s):
2434666 2346292
PAR ID:
10630239
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ICML Proceedings
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Markov games model interactions among multiple players in a stochastic, dynamic environment. Each player in a Markov game maximizes its expected total discounted reward, which depends upon the policies of the other players. We formulate a class of Markov games, termed affine Markov games, where an affine reward function couples the players’ actions. We introduce a novel solution concept, the soft-Bellman equilibrium, where each player is boundedly rational and chooses a soft-Bellman policy rather than a purely rational policy as in the well-known Nash equilibrium concept. We provide conditions for the existence and uniqueness of the soft-Bellman equilibrium and propose a nonlinear least-squares algorithm to compute such an equilibrium in the forward problem. We then solve the inverse game problem of inferring the players’ reward parameters from observed state-action trajectories via a projected-gradient algorithm. Experiments in a predator-prey OpenAI Gym environment show that the reward parameters inferred by the proposed algorithm outper- form those inferred by a baseline algorithm: they reduce the Kullback-Leibler divergence between the equilibrium policies and observed policies by at least two orders of magnitude. 
    more » « less
  2. We study security threats to Markov games due to information asymmetry and misinformation. We consider an attacker player who can spread misinformation about its reward function to influence the robust victim player's behavior. Given a fixed fake reward function, we derive the victim's policy under worst-case rationality and present polynomial-time algorithms to compute the attacker's optimal worst-case policy based on linear programming and backward induction. Then, we provide an efficient inception (""planting an idea in someone's mind"") attack algorithm to find the optimal fake reward function within a restricted set of reward functions with dominant strategies. Importantly, our methods exploit the universal assumption of rationality to compute attacks efficiently. Thus, our work exposes a security vulnerability arising from standard game assumptions under misinformation. 
    more » « less
  3. We characterize offline data poisoning attacks on Multi-Agent Reinforcement Learning (MARL), where an attacker may change a data set in an attempt to install a (potentially fictitious) unique Markov-perfect Nash equilibrium for a two-player zero-sum Markov game. We propose the unique Nash set, namely the set of games, specified by their Q functions, with a specific joint policy being the unique Nash equilibrium. The unique Nash set is central to poisoning attacks because the attack is successful if and only if data poisoning pushes all plausible games inside it. The unique Nash set generalizes the reward polytope commonly used in inverse reinforcement learning to MARL. For zero-sum Markov games, both the inverse Nash set and the set of plausible games induced by data are polytopes in the Q function space. We exhibit a linear program to efficiently compute the optimal poisoning attack. Our work sheds light on the structure of data poisoning attacks on offline MARL, a necessary step before one can design more robust MARL algorithms. 
    more » « less
  4. null (Ed.)
    We study the application of iterative first-order methods to the problem of computing equilibria of large-scale two-player extensive-form games. First-order methods must typically be instantiated with a regularizer that serves as a distance-generating function for the decision sets of the players. For the case of two-player zero-sum games, the state-of-the-art theoretical convergence rate for Nash equilibrium is achieved by using the dilated entropy function. In this paper, we introduce a new entropy-based distance-generating function for two-player zero-sum games, and show that this function achieves significantly better strong convexity properties than the dilated entropy, while maintaining the same easily-implemented closed-form proximal mapping. Extensive numerical simulations show that these superior theoretical properties translate into better numerical performance as well. We then generalize our new entropy distance function, as well as general dilated distance functions, to the scaled extension operator. The scaled extension operator is a way to recursively construct convex sets, which generalizes the decision polytope of extensive-form games, as well as the convex polytopes corresponding to correlated and team equilibria. By instantiating first-order methods with our regularizers, we develop the first accelerated first-order methods for computing correlated equilibra and ex-ante coordinated team equilibria. Our methods have a guaranteed 1/T rate of convergence, along with linear-time proximal updates. 
    more » « less
  5. We formulate a mean field game where each player stops a privately observed Brownian motion with absorption. Players are ranked according to their level of stopping and rewarded as a function of their relative rank. There is a unique mean field equilibrium, and it is shown to be the limit of associated n-player games. Conversely, the mean field strategy induces n-player ε-Nash equilibria for any continuous reward function—but not for discontinuous ones. In a second part, we study the problem of a principal who can choose how to distribute a reward budget over the ranks and aims to maximize the performance of the median player. The optimal reward design (contract) is found in closed form, complementing the merely partial results available in the n-player case. We then analyze the quality of the mean field design when used as a proxy for the optimizer in the n-player game. Surprisingly, the quality deteriorates dramatically as n grows. We explain this with an asymptotic singularity in the induced n-player equilibrium distributions. Funding: M. Nutz is supported by an Alfred P. Sloan Fellowship and the Division of Mathematical Sciences of the National Science Foundation [Grants DMS-1812661 and DMS-2106056]. Y. Zhang is supported in part by the Natural Sciences and Engineering Research Council of Canada [NSERC Discovery Grant RGPIN-2020-06290]. 
    more » « less