Abstract Internal waves generated by the interaction of the surface tides with topography are known to propagate long distances and lead to observable effects such as sea level variability, ocean currents, and mixing. In an effort to describe and predict these waves, the present work is concerned with using geographically distributed data from satellite altimeters and drifting buoys to estimate and map the baroclinic sea level associated with the M2, S2, N2, K1, and O1tides. A new mapping methodology is developed, based on a mixedL1/L2-norm optimization, and compared with previously developed methods for tidal estimation from altimeter data. The altimeter and drifter data are considered separately in their roles for estimating tides and for cross-validating estimates obtained with independent data. Estimates obtained from altimetry and drifter data are found to agree remarkably well in regions where the drifter trajectories are spatially dense; however, heterogeneity of the drifter trajectories is a disadvantage when they are considered alone for tidal estimation. When the different data types are combined by using geodetic mission altimetry to cross validate estimates obtained with either exact-repeat altimetry or drifter data, and subsequently averaging the latter estimates, the estimates significantly improve on the previously published HRET8.1 model, as measured by their utility for predicting sea level and surface currents in the open ocean. The methodology has been applied to estimate the annual modulations of M2, which are found to have much smaller amplitudes compared to those reported in HRET8.1, and suggest that the latter estimates of these tides were not reliable. Significance StatementThe mechanical and thermodynamic forcing of the ocean occurs primarily at very large scales associated with the gravitational perturbations of the sun and moon (tides), atmospheric wind stress, and solar insolation, but the frictional forces within the ocean act on very small scales. This research addresses the question of how the large-scale tidal forcing is transformed into the smaller-scale motion capable of being influenced by friction. The results show where internal waves are generated and how they transport energy across ocean basins to eventually be dissipated by friction. The results are useful to scientists interested in mapping the flows of mechanical energy in the ocean and predicting their influences on marine life, ocean temperature, and ocean currents.
more »
« less
This content will become publicly available on April 1, 2026
Near Resonance between the Shelf Ocean and Semidiurnal Atmospheric Tidal Winds
Abstract This manuscript illustrates the resonance between continental shelf oceans and the semidiurnal atmospheric tidal wind, explainingO(10−2) m semidiurnal sea surface height (SSH) variations in detided datasets. The resonance, similar to amplification of semidiurnal oceanic tides on the gentle and wide shelf, results in pronounced, offshore-attenuated standing waves on the shelf which is driven by the cross-shore pressure gradient force, Coriolis force, and the rotary wind stress. Observations and numerical results from the Texas–Louisiana shelf confirm this mechanism, where a significant presence of the semidiurnal tidal wind couples withO(10−1) m s−1ocean currents, influencing SSH distribution and sustaining the wave structure. The consistency of the interaction and momentum budgets with the analytical solution suggests the robustness of the semidiurnal atmospheric tidal wind interacting with the shelf ocean. Notably, these findings suggest that similar resonances could occur on other gentle shelves known for enhancing semidiurnal oceanic tides and contribute 3%–10% of the wind work.
more »
« less
- Award ID(s):
- 1851470
- PAR ID:
- 10630334
- Publisher / Repository:
- Journal of Physical Oceanography
- Date Published:
- Journal Name:
- Journal of Physical Oceanography
- Volume:
- 55
- Issue:
- 4
- ISSN:
- 0022-3670
- Page Range / eLocation ID:
- 397 to 413
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In the Arctic Ocean, limited measurements indicate that the strongest mixing below the atmospherically forced surface mixed layer occurs where tidal currents are strong. However, mechanisms of energy conversion from tides to turbulence and the overall contribution of tidally driven mixing to Arctic Ocean state are poorly understood. We present measurements from the shelf north of Svalbard that show abrupt isopycnal vertical displacements of 10–50 m and intense dissipation associated with cross‐isobath diurnal tidal currents of∼0.15 m s−1. Energy from the barotropic tide accumulated in a trapped baroclinic lee wave during maximum downslope flow and was released around slack water. During a 6‐hr turbulent event, high‐frequency internal waves were present, the full 300‐m depth water column became turbulent, dissipation rates increased by a factor of 100, and turbulent heat flux averaged 15 W m−2compared with the background rate of 1 W m−2.more » « less
-
Abstract In this study, we diagnose the spatial variability in the energetics of tidally generated diurnal, semidiurnal, and supertidal ( cycles per day) internal wave vertical modes (up to mode 6) in a 30‐day forward global ocean model simulation with a 4‐km grid spacing and 41 layers. The simulation is forced with realistic tides and atmospheric fields. Diurnal modes are resolved beyond mode 6, semidiurnal modes are resolved up to mode 4, and supertidal modes are resolved up to mode 2, in agreement with a canonical horizontal resolution criterion. The meridional trends in the kinetic to available potential energy ratios of these resolved modes agree with an internal wave consistency relation. The supertidal band is dominated by the higher harmonics of the diurnal and semidiurnal tides. Its higher harmonic energy projects on the internal wave dispersion curves in frequency‐wavenumber spectra and is captured mostly by the terdiurnal and quarterdiurnal mode‐1 waves. Terdiurnal modes are mostly generated in the west Pacific, where diurnal internal tides are strong. In contrast, quarterdiurnal modes occur at all longitudes near strong semidiurnal generation sites. The globally integrated energy in the supertidal band is about one order of magnitude smaller than the energy in the tidal band. The supertidal energy as a fraction of the tidal energy is elevated along semidiurnal internal wave beams in the tropics. We attribute this to near‐resonant interactions between tidal modes of the same mode number.more » « less
-
Abstract A set of collocated, in situ oceanographic and glaciological measurements from Petermann Gletscher Ice Shelf, Greenland, provides insights into the dynamics of under‐ice flow driving basal melting. At a site 16 km seaward of the grounding line within a longitudinal basal channel, two conductivity‐temperature (CT) sensors beneath the ice base and a phase‐sensitive radar on the ice surface were used to monitor the coupled ice shelf‐ocean system. A 6 month time series spanning 23 August 2015 to 12 February 2016 exhibited two distinct periods of ice‐ocean interactions. Between August and December, radar‐derived basal melt rates featured fortnightly peaks of∼15 m yr−1which preceded the arrival of cold and fresh pulses in the ocean that had high concentrations of subglacial runoff and glacial meltwater. Estimated current speeds reached 0.20 – 0.40 m s−1during these pulses, consistent with a strengthened meltwater plume from freshwater enrichment. Such signals did not occur between December and February, when ice‐ocean interactions instead varied at principal diurnal and semidiurnal tidal frequencies, and lower melt rates and current speeds prevailed. A combination of estimated current speeds and meltwater concentrations from the two CT sensors yields estimates of subglacial runoff and glacial meltwater volume fluxes that vary between 10 and 80 m3 s−1during the ocean pulses. Area‐average upstream ice shelf melt rates from these fluxes are up to 170 m yr−1, revealing that these strengthened plumes had already driven their most intense melting before arriving at the study site.more » « less
-
Abstract Mesospheric winds from three longitudinal sectors at 65°N and 54°N latitude are combined to diagnose the zonal wave numbers (m) of spectral wave signatures during the Southern Hemisphere sudden stratospheric warming (SSW) 2019. Diagnosed are quasi‐10‐ and 6‐day planetary waves (Q10DW and Q6DW,m = 1), solar semidiurnal tides withm = 1, 2, 3 (SW1, SW2, and SW3), lunar semidiurnal tide, and the upper and lower sidebands (USB and LSB,m = 1 and 3) of Q10DW‐SW2 nonlinear interactions. We further present 7‐year composite analyses to distinguish SSW effects from climatological features. Before (after) the SSW onset, LSB (USB) enhances, accompanied by the enhancing (fading) Q10DW, and a weakening of climatological SW2 maximum. These behaviors are explained in terms of Manley‐Rowe relation, that is, the energy goes first from SW2 to Q10DW and LSB, and then from SW2 and Q10DW to USB. Our results illustrate that the interactions can explain most wind variabilities associated with the SSW.more » « less
An official website of the United States government
