skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 1, 2026

Title: New RSL constraints for the Minch from OSL-dated Lateglacial shorelines
Past sea levels provide important constraints on global ice volumes, rates of tectonic motion, ice-sheet sea-level feedbacks, and the migration of species through time. Beneath formerly glaciated regions, the marine limit, the maximum extent of sea-levels after glacial retreat, provides some of the oldest post-Last Glacial Maximum (LGM) sea-level constraints. However, although the elevations of marine limits are plentiful, they often remain undated. In this study, we provide new age and elevation constraints on the late Pleistocene relative sea-level (RSL) history at 12 sites along the eastern flanks of the former Minch Ice Stream (MnIS) of northwest Scotland. Optically stimulated luminescence (OSL) was used to date the highest and presumably oldest preserved RSL indicators immediately after ice-sheet retreat. Although slightly older than earlier estimates, our ages confirm the early deglacial age of ~16.2–19.5 ka for the raised shorelines of northwest Scotland with declining marine limits north of the Isle of Skye from 26.2 ± 4.8 m at Ardaneaskan to 12.8 ± 4.8 m elevation at Achiltibuie, the latter of which lies inside the moraines of the Wester Ross Readvance. Our new OSL ages suggest deglaciation of the MnIS may have been slightly earlier than previously thought, although our large error bars highlight the need for additional age constraints. Our new RSL data provide important constraints for Glacial Isostatic Adjustment (GIA) models for Scotland and shed light on the behavior of the former MnIS, thought to be susceptible to marine ice-sheet instability.  more » « less
Award ID(s):
2147750
PAR ID:
10630354
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Quaternary Science Reviews
Volume:
367
Issue:
C
ISSN:
0277-3791
Page Range / eLocation ID:
109543
Subject(s) / Keyword(s):
Sea Level Glacial Isostatic Adjustment United Kingdom Post-Glacial Rebound Beach Ridge
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Raised shorelines provide important constraints on past sea levels, glacial isostatic adjustment (GIA), and rates and directions of vertical crustal motion. Although most raised shorelines across NW Scotland relate to post‐Last Glacial Maximum (LGM) glacial‐isostatic rebound, many undated shorelines lie above the marine limit established from isolation basins. Here, we present new optically stimulated luminescence (OSL) ages for a raised marine terrace at an elevation of 28 m in Slaggan Bay of NW Scotland. Four OSL ages suggest the feature is pre‐LGM, likely Marine Isotope Stage (MIS) 3. Global mean sea levels (GMSL) during MIS 3 are thought to have been ~40–60 m below present across most of the globe. We use a pair of GIA models to determine what ice sheet and sea‐level scenarios might provide an explanation for these anomalously high sea levels during MIS 3. Our results suggest that in the absence of tectonic activity, such high MIS 3 shorelines across NW Scotland require a MIS 4 ice sheet in Scotland, with postglacial rebound of the crustal depression following its demise during MIS 3 responsible for the elevated shoreline features at that time. 
    more » « less
  2. Abstract. Widespread existing geological records from above the modern ice sheet surface and outboard of the current ice margin show that the Antarctic IceSheet (AIS) was much more extensive at the Last Glacial Maximum (∼ 20 ka) than at present. However, whether it was ever smaller thanpresent during the last few millennia, and (if so) by how much, is known only for a few locations because direct evidence lies within or beneath theice sheet, which is challenging to access. Here, we describe how retreat and readvance (henceforth “readvance”) of AIS grounding lines during theHolocene could be detected and quantified using subglacial bedrock, subglacial sediments, marine sediment cores, relative sea-level (RSL) records,geodetic observations, radar data, and ice cores. Of these, only subglacial bedrock and subglacial sediments can provide direct evidence forreadvance. Marine archives are of limited utility because readvance commonly covers evidence of earlier retreat. Nevertheless, stratigraphictransitions documenting change in environment may provide support for direct evidence from subglacial records, as can the presence of transgressionsin RSL records, and isostatic subsidence. With independent age control, ice structure revealed by radar can be used to infer past changes in iceflow and geometry, and therefore potential readvance. Since ice cores capture changes in surface mass balance, elevation, and atmosphericand oceanic circulation that are known to drive grounding line migration, they also have potential for identifying readvance. A multidisciplinaryapproach is likely to provide the strongest evidence for or against a smaller-than-present AIS in the Holocene. 
    more » « less
  3. Sea-level changes in polar environments are important for understanding the timing and magnitude of past ice-sheet changes. Most of the few records of such past sea-level changes in Antarctica are those derived from raised beach ridges. Many studies using raised beach ridges to reconstruct past sea levels across Antarctica commonly assume that they only record falling sea levels. However, their internal architecture may contain a record of other oscillations in relative sea-level (RSL) change. In this study, we examine the internal architecture of a well-developed set of raised beach ridges on Livingston Island of the Antarctic Peninsula using 10+ km of ground penetrating radar (GPR). Recalibrated published radiocarbon ages are used in combination with new optically stimulated luminescence (OSL) ages to compare beach morphology and stratigraphy to the glacial history of the region. Within this flight of raised beach ridges, evidence was found for both regressive and transgressive depositional patterns marked by progradational seaward dipping facies deposited during periods of RSL fall followed by erosion and deposition of landward dipping overwash and aggrading beds during interpreted periods of RSL rise. This succession is routinely located over a notch in the bedrock interpreted to represent a wave-cut feature. The ages of raised beach ridges underlain by wave-cut notches and composed of landward-dipping strata correlate with known Holocene ice advances at <500, ~2000, and ~5000 cal yrs BP. We propose that these transgressive phases are the result of glacial-isostatic adjustment (GIA). This GIA hypothesis further supports recent assertions of a much more dynamic RSL history for Antarctic coastlines, which may contaminate the Last Glacial Maximum RSL signal across Antarctica. 
    more » « less
  4. Abstract. Greenland Ice Sheet (GrIS) outlet glaciers are currently losing mass, leading to sea level rise. Reconstructions of past outlet glacier behavior through the Holocene help us better understand how they respond to climate change. Kiattuut Sermiat, a southern Greenland outlet glacier near Narsarsuaq, is known to have experienced an unusually large Late Holoceneadvance that culminated at ∼1600 cal yr BP and exceeded theglacier's Little Ice Age extent. We report sedimentary records from twolakes at slightly different elevations in an upland valley adjacent toKiattuut Sermiat. These reveal when the outlet glacier's surface elevationwas higher than during the Little Ice Age and constrain the associatedoutlet glacier surface elevation. We use bulk sediment geochemistry,magnetic susceptibility, color, texture, and the presence of aquatic plantmacrofossils to distinguish between till, glaciolacustrine sediments, andorganic lake sediments. Our 14C results above basal till recordingregional deglaciation skew slightly old due to a reservoir effect but aregenerally consistent with regional deglaciation occurring ∼ 11 000 cal yr BP. Neoglacial advance of Kiattuut Sermiat is recorded by deposition of glaciolacustrine sediments in the lower-elevation lake, which we infer was subsumed by an ice-dammed lake that formed along the glacier's margin just after ∼ 3900 cal yr BP. This timing is consistent with several other glacial records in Greenland showing neoglacial cooling driving advance between ∼ 4500–3000 cal yr BP. Given that glaciolacustrine sediments were deposited only in the lower-elevation lake, combined with glacial geomorphological evidence in the valley containing these lakes, we estimate the former ice margin's elevation to have been ∼ 670 m a.s.l., compared with ∼ 420 m a.s.l. today. The ice-dammed lake persisted until the glacier surface fell below this elevation at ∼ 1600 cal yr BP. The retreat timing contrasts with overall evidence for cooling and glacier advance in the region at that time, so we infer that Kiattuut Sermiat's retreat may have resulted from reduced snowfall amounts and/or local glaciological complexity. High sensitivity to precipitation changes could also explain the relatively limited Little Ice Age advance of Kiattuut Sermiat compared with the earlier neoglacial advance. 
    more » « less
  5. Accurate reconstruction of Laurentide Ice Sheet volume changes following the Last Glacial Maximum is critical for understanding ice sheet contribution to sea-level rise, the resulting influence of meltwater on oceanic circulation, and the spatial and temporal patterns of deglaciation. Here, we provide empirical constraints on Laurentide Ice Sheet thinning during the last deglaciation by measuring in situ cosmogenic 10Be in 81 samples collected along vertical transects of nine mountains in the northeastern United States. In conjunction with 107 exposure age samples over five vertical transects from previous studies, we reconstruct ice sheet thinning history. At peripheral sites (within 200 km of the terminal moraine), we find evidence for ∼600 m of thinning between 19.5 ka and 17.5 ka, which is coincident with the slow initial margin retreat indicated by varve records. At locations >400 km north of the terminal moraine, exposure ages above and below 1200 m a.s.l. exhibit different patterns. Ages above this elevation are variable and older, while lower elevation ages are indistinguishable over 800−1000 m elevation ranges, a pattern that suggests a subglacial thermal boundary at ∼1200 m a.s.l. separating erosive, warm-based ice below and polythermal, minimally erosive ice above. Low-elevation ages from up-ice mountains are between 15 ka and 13 ka, which suggests rapid thinning of ∼1000 m coincident with Bølling-Allerød warming. These rates of rapid paleo-ice thinning are comparable to those of other vertical exposure age transects around the world and may have been faster than modern basin-wide thinning rates in Antarctica and Greenland, which suggests that the southeastern Laurentide Ice Sheet was highly sensitive to a warming climate. 
    more » « less