skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Variation in immune response in the generalist herbivore fall webworm across four common host plants
Abstract Dietary generalist herbivorous insects are widespread and often occur in a variety of environments. Across their geographic range, herbivorous insects may encounter variable plant traits as they feed on high‐quality or low‐quality plants. Herbivorous insect larvae experience both bottom‐up (host plant) and top‐down (parasitoid) factors that affect survival. Host plant quality may affect larval growth and survival in that larvae feeding on low‐quality plants often suffer reduced fitness. However, herbivores on different host plants are also subject to different levels of parasitism. High‐quality plants confer stronger larval performance (higher survival, more offspring), but larvae may also face higher parasitism. In some herbivore species, diet mediates larval immune response. The generalist insect herbivore fall webworm (FW),Hyphantria cuneaDrury (Lepidoptera: Erebidae), is a moth native to North America, and its larvae have considerable variance in their performance when reared on different host plants. We investigated whether diet affects the immune response in FW larvae when they are reared on different host plant species known to vary in food quality. We measured immune response by melanization of a nylon filament. We found significant differences in immune response across host plants, indicating that diet mediates immune response in FW larvae. Our study helps elucidate the factors that cause variation in immune response in a generalist herbivore.  more » « less
Award ID(s):
2030753 2030743
PAR ID:
10630393
Author(s) / Creator(s):
; ;
Publisher / Repository:
Entomologia Experimentalis et Applicata
Date Published:
Journal Name:
Entomologia Experimentalis et Applicata
Volume:
172
Issue:
11
ISSN:
0013-8703
Page Range / eLocation ID:
1008 to 1013
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Parents can provide care to their offspring to increase their offspring's chance of survival. There are various types of parental care across insect taxa, one of which is maternal investment. Lipids, the most energy‐dense of macronutrients, are considered a good estimate of maternal investment in insects. However, it is not clear how different environments, such as host plants, can impact provisioning, especially for dietary generalists that feed on an array of plant species with varying quality. Using an extreme dietary generalist, fall webworm (FW,Hyphantria cunea), we investigated if females provision different amounts of lipids into their eggs depending on the diet they fed upon as larvae. We measured the lipid content of FW egg clusters from parents reared on seven host plant species of varying quality. We found that parental host plants influenced egg provisioning, such that provisioning depends on host plant but also increases most for parents reared on low‐quality diets. Additionally, we found that female parents with heavier pupal mass produced egg clusters with greater lipids per egg. Our results provide evidence that egg provisioning can depend on the parental environment and suggest that the use of low‐quality host plants by generalist herbivores may be partially overcome via maternal investment. 
    more » « less
  2. Doris, Nicole; Vahl, Cate; Kruger, Elijah (Ed.)
    Dietary generalist insects are important to ecological communities because they are commonly found in many environments and play important roles in ecosystem services like pollination and decomposition. Although dietary generalist herbivores eat a broad range of plant species, regional populations of these species may have significantly narrower or specialized diet breadths. Fall webworm (Hyphantria cunea, hereafter FW) is a dietary generalist at the species level, but we do not know if there is dietary generalism at the population level or how generalism varies across populations. In Colorado, FW larvae feed on only a few plant species, but many plant species are available that are used by FW elsewhere and not locally. We investigated if FW may be an example of a species that is a dietary generalist when considered over a large geographic range but is composed of populations with narrower diets regionally.We reared FW larvae from fifteen maternal lines in Colorado on a local high-quality host plant and compared their performance (survival, development time, and pupal mass) with larvae reared on plants that are not used locally. We found that FW performance was significantly reduced on plant species that Colorado FW does not use. Our findings demonstrate that Colorado FW cannot eat the same plants as FW in the eastern United States and thus lack the physiological ability to feed on these plants. Our research also suggests that FW are a generalist species with narrower diets that vary regionally at the population level. 
    more » « less
  3. ABSTRACT Herbivorous insects tolerate chemical and metabolic variation in their host plant diet by modulating physiological traits. Insect immune response is one such trait that plays a crucial role in maintaining fitness but can be heavily influenced by variation in host plant quality. An important question is how the use of different host plants affects the ability of herbivorous insects to resist viral pathogens. Furthermore, the transcriptional changes associated with this interaction of diet and viral pathogens remain understudied. The Melissa blue butterfly (Lycaeides melissa) has colonised the exotic legumeMedicago sativaas a larval host within the past 200 years. We used this system to study the interplay between the effects of host plant variation and viral infection on physiological responses and global gene expression. We measured immune strength in response to infection by the Junonia coenia densovirus (JcDV) in two ways: (1) direct measurement of phenoloxidase activity and melanisation, and (2) transcriptional sequencing of individuals exposed to different viral and host plant treatments. Our results demonstrate that viral infection caused total phenoloxidase (total PO) to increase and viral infection and host plant interactively affected total PO such that for infected larvae, total PO was significantly higher for larvae consuming the native host plant. Additionally,L. melissalarvae differentially expressed several hundred genes in response to host plant treatment, but with minimal changes in gene expression in response to viral infection. Not only immune genes, but several detoxification, transporter, and oxidase genes were differentially expressed in response to host plant treatments. These results demonstrate that in herbivorous insects, consumption of a novel host plant can alter both physiological and transcriptional responses relevant to viral infection, emphasising the importance of considering immune and detoxification mechanisms into models of evolution of host range in herbivorous insects. 
    more » « less
  4. Abstract Why and how herbivorous insects choose to feed on some plant species and not others can be influenced by many factors; however, it is not always clear why herbivorous insects will choose to lay their eggs on some plants over others. The Hopkins’ host selection principle (hereafter HHSP) hypothesizes that female insects prefer to lay eggs on host plants upon which they fed as larvae, but there are studies that both support and refute the hypothesis. Here, we test HHSP in a dietary generalist moth, fall webworm (Hyphantria cunea, hereafter FW). Previously, local host plant abundance has been the only factor found to determine FW host plant use; whether FW exhibit individual host plant preferences is unknown. We conducted preference tests with females of the two FW morphotypes (red-head and black-head), presenting females with four host plants: their one natal host plant, two other potential host plants, and one non-host plant for that morphotype that is a host plant for the other morphotype. Overwhelmingly, females of both morphotypes oviposited on a non-plant surface in the choice arena and those that did oviposit on a plant did not distinguish between host plants and non-host plants. Of the few FW females that oviposited on a host plant, only red-head females showed preference for their natal hosts. Our results support previous findings that HHSP is not a strong driver of host plant selection, suggesting that female FW are not selective in their choice of host plants, which may facilitate generalism in this species. 
    more » « less
  5. Koinobiont endoparasitoid wasps whose larvae develop inside a host insect alter several important facets of host physiology, potentially causing cascading effects across multiple trophic levels. For instance, the hijacking of the host immune responses may have effects on how insects interact with host plants and microbial associates. However, the parasitoid regulation of insect–plant–microbiome interactions is still understudied. In this study, we used the fall armyworm (FAW), Spodoptera frugiperda , and the braconid parasitoid Cotesia marginiventris to evaluate impacts of parasitism on the gut microbiome of FAW larvae, and respective maize plant defense responses. The level of reactive oxygen species and the microbial community in larval gut underwent significant changes in response to parasitism, leading to a significant reduction of Enterococcus , while elevating the relative abundance of Pseudomonas . FAW with parasitism had lower glucose oxidase (GOX) activity in salivary glands and triggered lower defense responses in maize plants. These changes corresponded to effects on plants, as Pseudomonas inoculated larvae had lower activity of salivary GOX and triggered lower defense responses in maize plants. Our results demonstrated that parasitism had cascading effects on microbial associates across trophic levels and also highlighted that insect gut bacteria may contribute to complex interrelationships among parasitoids, herbivores, and plants. 
    more » « less