skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Robust Performance of SARS-CoV-2 Whole-Genome Sequencing from Wastewater with a Nonselective Virus Concentration Method
The sequencing of human virus genomes from wastewater samples is an efficient method for tracking viral transmission and evolution at the community level. However, this requires the recovery of viral nucleic acids of high quality. We developed a reusable tangential-flow filtration system to concentrate and purify viruses from wastewater for genome sequencing. A pilot study was conducted with 94 wastewater samples from four local sewersheds, from which viral nucleic acids were extracted, and the whole genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was sequenced using the ARTIC V4.0 primers. Our method yielded a high probability (0.9) of recovering complete or near-complete SARS-CoV-2 genomes (>90% coverage at 10× depth) from wastewater when the COVID-19 incidence rate exceeded 33 cases per 100 000 people. The relative abundances of sequenced SARS-CoV-2 variants followed the trends observed from patient-derived samples. We also identified SARS-CoV-2 lineages in wastewater that were underrepresented or not present in the clinical whole-genome sequencing data. The developed tangential-flow filtration system can be easily adopted for the sequencing of other viruses in wastewater, particularly those at low concentrations.  more » « less
Award ID(s):
2200173
PAR ID:
10630438
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Corporate Creator(s):
Editor(s):
NA
Publisher / Repository:
American Chemical Society: Environsmental Scince & Technology - Water
Date Published:
Journal Name:
ACS ES&T Water
Edition / Version:
1
Volume:
3
Issue:
4
ISSN:
2690-0637
Page Range / eLocation ID:
954 to 962
Subject(s) / Keyword(s):
COVID-19 SARS-CoV-2 tangential-flow filtration wastewater genome sequencing wastewater-based epidemiology
Format(s):
Medium: X Size: 5.3 MB Other: pdf
Size(s):
5.3 MB
Sponsoring Org:
National Science Foundation
More Like this
  1. Elkins, Christopher A (Ed.)
    ABSTRACT Municipal wastewater harbors diverse RNA viruses, which are responsible for many emerging and reemerging diseases in humans, animals, and plants. Although genomic sequencing can be a high-throughput approach for profiling the RNA virome in wastewater, wastewater processing methods often influence sequencing outcomes. Here, we systematically evaluated two wastewater processing methods, tangential-flow ultrafiltration (TFF) and Nanotrap Microbiome A Particles, for detecting the target RNA virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via amplicon sequencing and characterizing the RNA virome using whole-transcriptome shotgun sequencing. Our results from paired comparison tests showed that the TFF and Nanotrap methods recovered similar SARS-CoV-2 variants at the lineage level (analysis of similarity [ANOSIM]R= −0.012,P= 0.874). Optimizing automated procedures for the Nanotrap method and concentration factors for the TFF method was critical for achieving high-depth and high-breadth coverage of the target virus genome. Notably, the two methods enriched distinct RNA viromes from the same wastewater samples (ANOSIMR= 0.260,P= 0.002), with TFF samples showing 22-fold and 7-fold higher relative abundances ofReoviridaeandCoronaviridae, respectively. These differences are likely due to the distinct virus concentration mechanisms employed by each method, which are influenced by liquid-solid partitioning of virus particles and interactions of viral surface proteins with ligands. Our findings underscore the importance of optimizing wastewater processing methods for genomic monitoring and have implications for broader environmental applications.IMPORTANCEWastewater genomic sequencing is an emerging technology for tracking viral infections within communities. However, different methods for concentrating viruses and extracting nucleic acids can influence the recoveries of RNA virome from wastewater. An in-depth understanding of virus concentration mechanisms and their impact on sequencing data quality and bioinformatic output would be critical to guide method selection and optimization. Specifically, this study systematically evaluated tangential-flow ultrafiltration and Nanotrap microbiome particles for their application to sequence SARS-CoV-2 and whole RNA virome from wastewater. Both methods yielded high-quality sequencing data for amplicon sequencing of SARS-CoV-2, but their outcomes diverged in the recovered RNA virome. We identified RNA viruses that are preferentially recovered by each of these two methods and proposed considerations of method selection for future studies of wastewater RNA virome. 
    more » « less
  2. Pettigrew, Melinda M. (Ed.)
    ABSTRACT Viral genome sequencing has guided our understanding of the spread and extent of genetic diversity of SARS-CoV-2 during the COVID-19 pandemic. SARS-CoV-2 viral genomes are usually sequenced from nasopharyngeal swabs of individual patients to track viral spread. Recently, RT-qPCR of municipal wastewater has been used to quantify the abundance of SARS-CoV-2 in several regions globally. However, metatranscriptomic sequencing of wastewater can be used to profile the viral genetic diversity across infected communities. Here, we sequenced RNA directly from sewage collected by municipal utility districts in the San Francisco Bay Area to generate complete and nearly complete SARS-CoV-2 genomes. The major consensus SARS-CoV-2 genotypes detected in the sewage were identical to clinical genomes from the region. Using a pipeline for single nucleotide variant calling in a metagenomic context, we characterized minor SARS-CoV-2 alleles in the wastewater and detected viral genotypes which were also found within clinical genomes throughout California. Observed wastewater variants were more similar to local California patient-derived genotypes than they were to those from other regions within the United States or globally. Additional variants detected in wastewater have only been identified in genomes from patients sampled outside California, indicating that wastewater sequencing can provide evidence for recent introductions of viral lineages before they are detected by local clinical sequencing. These results demonstrate that epidemiological surveillance through wastewater sequencing can aid in tracking exact viral strains in an epidemic context. 
    more » « less
  3. Abstract Deletions are prevalent in the genomes of SARS-CoV-2 isolates from COVID-19 patients, but their roles in the severity, transmission, and persistence of disease are poorly understood. Millions of COVID-19 swab samples from patients have been sequenced and made available online, offering an unprecedented opportunity to study such deletions. Multiplex PCR-based amplicon sequencing (amplicon-seq) has been the most widely used method for sequencing clinical COVID-19 samples. However, existing bioinformatics methods applied to negative control samples sequenced by multiplex-PCR sequencing often yield large numbers of false-positive deletions. We found that these false positives commonly occur in short alignments, at low frequency and depth, and near primer-binding sites used for whole-genome amplification. To address this issue, we developed a filtering strategy, validated with positive control samples containing a known deletion. Our strategy accurately detected the known deletion and removed more than 99% of false positives. This method, applied to public COVID-19 swab data, revealed that deletions occurring independently of transcription regulatory sequences were about 20-fold less common than previously reported; however, they remain more frequent in symptomatic patients. Our optimized approach should enhance the reliability of SARS-CoV-2 deletion characterization from surveillance studies. Finally, our approach may guide the development of more reliable bioinformatics pipelines for genome sequence analyses of other viruses. 
    more » « less
  4. Objectives: Rapid evolution of SARS-CoV-2 has resulted in the emergence of numerous variants, posing significant challenges to public health surveillance. Clinical genome sequencing, while valuable, has limitations in capturing the full epidemiological dynamics of circulating variants in the general population. This study aimed to monitor the SARS-CoV-2 variant community dynamics and evolution using receptor-binding domain (RBD) amplicon sequencing of wastewater samples. Methods: We sequenced wastewater from El Paso, Texas, over 17 months, compared the sequencing data with clinical genome data, and performed biodiversity analysis to reveal SARS-CoV-2 variant dynamics and evolution. Results: We identified 91 variants and observed waves of dominant variants transitioning from BA.2 to BA.2.12.1, BA.4&5, BQ.1, and XBB.1.5. Comparison with clinical genome sequencing data revealed earlier detection of variants and identification of unreported outbreaks. Our results also showed strong consistency with clinical data for dominant variants at the local, state, and national levels. Alpha diversity analyses revealed significant seasonal variations, with the highest diversity observed in winter. By segmenting the outbreak into lag, growth, stationary, and decline phases, we found higher variant diversity during the lag phase, likely due to lower inter-variant competition preceding outbreak growth. Conclusions: Our findings underscore the importance of low transmission periods in facilitating rapid mutation and variant evolution. Our approach, integrating RBD amplicon sequencing with wastewater surveillance, demonstrates effectiveness in tracking viral evolution and understanding variant emergence, thus enhancing public health preparedness. 
    more » « less
  5. The detection of nucleic acids and their mutation derivatives is vital for biomedical science and applications. Although many nucleic acid biosensors have been developed, they often require pretreatment processes, such as target amplification and tagging probes to nucleic acids. Moreover, current biosensors typically cannot detect sequence-specific mutations in the targeted nucleic acids. To address the above problems, herein, we developed an electrochemical nanobiosensing system using a phenomenon comprising metal ion intercalation into the targeted mismatched double-stranded nucleic acids and a homogeneous Au nanoporous electrode array (Au NPEA) to obtain (i) sensitive detection of viral RNA without conventional tagging and amplifying processes, (ii) determination of viral mutation occurrence in a simple detection manner, and (iii) multiplexed detection of several RNA targets simultaneously. As a proof-of-concept demonstration, a SARS-CoV-2 viral RNA and its mutation derivative were used in this study. Our developed nanobiosensor exhibited highly sensitive detection of SARS-CoV-2 RNA (∼1 fM detection limit) without tagging and amplifying steps. In addition, a single point mutation of SARS-CoV-2 RNA was detected in a one-step analysis. Furthermore, multiplexed detection of several SARS-CoV-2 RNAs was successfully demonstrated using a single chip with four combinatorial NPEAs generated by a 3D printing technique. Collectively, our developed nanobiosensor provides a promising platform technology capable of detecting various nucleic acids and their mutation derivatives in highly sensitive, simple, and time-effective manners for point-of-care biosensing. 
    more » « less