skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evolutionary adaptation under climate change: Aedes sp. demonstrates potential to adapt to warming
Climate warming is expected to shift the distributions of mosquitoes and mosquito-borne diseases, promoting expansions at cool range edges and contractions at warm range edges. However, whether mosquito populations could maintain their warm edges through evolutionary adaptation remains unknown. Here, we investigate the potential for thermal adaptation inAedes sierrensis, a congener of the major disease vector species that experiences large thermal gradients in its native range, by assaying tolerance to prolonged and acute heat exposure, and its genetic basis in a diverse, field-derived population. We found pervasive evidence of heritable genetic variation in mosquito heat tolerance, and phenotypic trade-offs in tolerance to prolonged versus acute heat exposure. Further, we found genomic variation associated with prolonged heat tolerance was clustered in several regions of the genome, suggesting the presence of larger structural variants such as chromosomal inversions. A simple evolutionary model based on our data estimates that the maximum rate of evolutionary adaptation in mosquito heat tolerance will exceed the projected rate of climate warming, implying the potential for mosquitoes to track warming via genetic adaptation.  more » « less
Award ID(s):
2011147
PAR ID:
10630493
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
122
Issue:
2
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. How mosquitoes may respond to rapid climate warming remains unknown for most species, but will have major consequences for their future distributions, with cascading impacts on human well-being, biodiversity and ecosystem function. We investigated the adaptive potential of a wide-ranging mosquito species,Aedes sierrensis, across a large climatic gradient by conducting a common garden experiment measuring the thermal limits of mosquito life-history traits. Although field-collected populations originated from vastly different thermal environments that spanned over 1200 km, we found limited variation in upper thermal tolerance between populations. In particular, the upper thermal limits of all life-history traits varied by less than 3°C across the species range and, for most traits, did not differ significantly between populations. For one life-history trait—pupal development rate—we did detect significant variation in upper thermal limits between populations, and this variation was strongly correlated with source temperatures, providing evidence of local thermal adaptation for pupal development. However, we found that maximum environmental temperatures across most of the species' range already regularly exceed the highest upper thermal limits estimated under constant temperatures. This result suggests that strategies for coping with and/or avoiding thermal extremes are likely key components of current and future mosquito thermal tolerance. 
    more » « less
  2. ABSTRACT Climate warming is expected to substantially impact the global landscape of mosquito‐borne disease, but these impacts will vary across disease systems and regions. Understanding which diseases, and where within their distributions, these impacts are most likely to occur is critical for preparing public health interventions. While research has centered on potential warming‐driven expansions in vector transmission, less is known about the potential for vectors to experience warming‐driven stress or even local extirpations. In conservation biology, species risk from climate warming is often quantified through vulnerability indices such as thermal safety margins—the difference between an organism's upper thermal limit and its habitat temperature. Here, we estimated thermal safety margins for 8 mosquito species that are the vectors of malaria, dengue, chikungunya, Zika, West Nile and other major arboviruses, across their known ranges to investigate which mosquitoes and regions are most and least vulnerable to climate warming. We find that several of the most medically important mosquito vector species, includingAe. aegyptiandAn. gambiae, have positive thermal safety margins across the majority of their ranges when realistic assumptions of mosquito behavioral thermoregulation are incorporated. On average, the lowest climate vulnerability, in terms of both the magnitude and duration of thermal safety, was just south of the equator and at northern temperate range edges, and the highest climate vulnerability was in the subtropics. Mosquitoes living in regions including the Middle East, the western Sahara, and southeastern Australia, which are largely comprised of desert and xeric shrubland biomes, have the highest climate vulnerability across vector species. 
    more » « less
  3. Abstract Variation in heat tolerance among populations can determine whether a species is able to cope with ongoing climate change. Such variation may be especially important for ectotherms whose body temperatures, and consequently, physiological processes, are regulated by external conditions.Additionally, differences in body size are often associated with latitudinal clines, thought to be driven by climate gradients. While studies have begun to explore variation in body size and heat tolerance within species, our understanding of these patterns across large spatial scales, particularly regarding the roles of plasticity and genetic differences, remains incomplete.Here, we examine body size, as measured by wing length, and thermal tolerance, as measured by the time to immobilisation at high temperatures (“thermal knockdown”), in populations of the mosquitoAedes sierrensiscollected from across a large latitudinal climate gradient spanning 1300 km (34–44° N).We find that mosquitoes collected from lower latitudes and warmer climates were more tolerant of high temperatures than those collected from higher latitudes and colder climates. Moreover, body size increased with latitude and decreased with temperature, a pattern consistent with James' rule, which appears to be a result of plasticity rather than genetic variation.Our results suggest that warmer environments produce smaller and more thermally tolerant populations. 
    more » « less
  4. Synopsis Temperature is a major driver of individual performance in ectotherms, with this impact depending on stressor intensity and duration. Differences in individual response across temperature, time, and populations are shaped by the interplay between evolutionary adaptation and phenotypic plasticity. Some populations are able to thrive in novel and changing environments despite limited genetic diversity, raising the question of how plasticity and adaptation interact after significant genetic diversity loss. The European green crab (Carcinus maenas) is a textbook example of this phenomenon: invasive populations boast a broad thermal tolerance and exceptional thermal flexibility even after repeated genetic bottlenecks. Despite this loss of diversity overall, prior work has found a strong population-level association between variation at a specific extended genomic region (supergene), cold tolerance, and sea surface temperature. We conducted a series of three experiments using righting response to characterize sublethal thermal tolerance and plasticity in introduced green crab populations, then determined if these factors were associated with supergene genotype for individual adult crabs. Crabs showed signs of stress after exposure to a 30°C heat shock in one experiment. Interestingly, a second experiment exposing C. maenas to repeated 24-h heat shocks showed that prior heat shock conferred beneficial plasticity during a subsequent event. The third experiment examined cold acclimation over multiple timepoints up to 94 h. At 5°C, certain crabs exhibited an acclimatory response where righting slowed dramatically at first, and then gradually sped up after a longer period of cold exposure. Several crabs failed to right at 1.5°C, which could be indicative of dormancy employed to reduce energy consumption in colder conditions. There were no significant relationships between individual plasticity and supergene genotype in any experiment. Linking population-level genetic associations with individual-level physiology is complex, and reflects the impact of environmental conditions such as temperature throughout life history in shaping adult phenotype. Our results highlight the robust thermal tolerance and plasticity that adult green crabs maintain despite a substantial reduction in genetic diversity, and underscore the importance of probing population-level genotype-phenotype associations at the individual level. 
    more » « less
  5. Mireji, Paul O (Ed.)
    Mosquito vectors of pathogens (e.g.,Aedes,Anopheles, andCulexspp. which transmit dengue, Zika, chikungunya, West Nile, malaria, and others) are of increasing concern for global public health. These vectors are geographically shifting under climate and other anthropogenic changes. As small-bodied ectotherms, mosquitoes are strongly affected by temperature, which causes unimodal responses in mosquito life history traits (e.g., biting rate, adult mortality rate, mosquito development rate, and probability of egg-to-adult survival) that exhibit upper and lower thermal limits and intermediate thermal optima in laboratory studies. However, it remains unknown how mosquito thermal responses measured in laboratory experiments relate to the realized thermal responses of mosquitoes in the field. To address this gap, we leverage thousands of global mosquito occurrences and geospatial satellite data at high spatial resolution to construct machine-learning based species distribution models, from which vector thermal responses are estimated. We apply methods to restrict models to the relevant mosquito activity season and to conduct ecologically plausible spatial background sampling centered around ecoregions for comparison to mosquito occurrence records. We found that thermal minima estimated from laboratory studies were highly correlated with those from the species distributions (r = 0.87). The thermal optima were less strongly correlated (r = 0.69). For most species, we did not detect thermal maxima from their observed distributions so were unable to compare to laboratory-based estimates. The results suggest that laboratory studies have the potential to be highly transportable to predicting lower thermal limits and thermal optima of mosquitoes in the field. At the same time, lab-based models likely capture physiological limits on mosquito persistence at high temperatures that are not apparent from field-based observational studies but may critically determine mosquito responses to climate warming. Our results indicate that lab-based and field-based studies are highly complementary; performing the analyses in concert can help to more comprehensively understand vector response to climate change. 
    more » « less