Abstract BackgroundTeachers often rely on the use of open‐ended questions to assess students' conceptual understanding of assigned content. Particularly in the context of mathematics; teachers use these types of questions to gain insight into the processes and strategies adopted by students in solving mathematical problems beyond what is possible through more close‐ended problem types. While these types of problems are valuable to teachers, the variation in student responses to these questions makes it difficult, and time‐consuming, to evaluate and provide directed feedback. It is a well‐studied concept that feedback, both in terms of a numeric score but more importantly in the form of teacher‐authored comments, can help guide students as to how to improve, leading to increased learning. It is for this reason that teachers need better support not only for assessing students' work but also in providing meaningful and directed feedback to students. ObjectivesIn this paper, we seek to develop, evaluate, and examine machine learning models that support automated open response assessment and feedback. MethodsWe build upon the prior research in the automatic assessment of student responses to open‐ended problems and introduce a novel approach that leverages student log data combined with machine learning and natural language processing methods. Utilizing sentence‐level semantic representations of student responses to open‐ended questions, we propose a collaborative filtering‐based approach to both predict student scores as well as recommend appropriate feedback messages for teachers to send to their students. Results and ConclusionWe find that our method outperforms previously published benchmarks across three different metrics for the task of predicting student performance. Through an error analysis, we identify several areas where future works may be able to improve upon our approach.
more »
« less
This content will become publicly available on August 1, 2026
Developing Feedback Taxonomy for Math: A Synergy of Perspectives through Data Mining Methods
Teachers often use open-ended questions to promote students' deeper understanding of the content. These questions are particularly useful in K–12 mathematics education, as they provide richer insights into students' problem-solving processes compared to closed-ended questions. However, they are also challenging to implement in educational technologies as significant time and effort are required to qualitatively evaluate the quality of students' responses and provide timely feedback. In recent years, there has been growing interest in developing algorithms to automatically grade students' open responses and generate feedback. Yet, few studies have focused on augmenting teachers' perceptions and judgments when assessing students' responses and crafting appropriate feedback. Even fewer have aimed to build empirically grounded frameworks and offer a shared language across different stakeholders. In this paper, we propose a taxonomy of feedback using data mining methods to analyze teacher-authored feedback from an online mathematics learning platform. By incorporating qualitative codes from both teachers and researchers, we take a methodological approach that accounts for the varying interpretations across coders. Through a synergy of diverse perspectives and data mining methods, our data-driven taxonomy reflects the complexity of feedback content as it appears in authentic settings. We discuss how this taxonomy can support more generalizable methods for providing pedagogically meaningful feedback at scale.
more »
« less
- Award ID(s):
- 2331379
- PAR ID:
- 10630602
- Publisher / Repository:
- Zenodo
- Date Published:
- Journal Name:
- Journal of Educational Data Mining
- Volume:
- 17
- Issue:
- 1
- ISSN:
- 2157-2100
- Page Range / eLocation ID:
- 337-360
- Subject(s) / Keyword(s):
- feedback taxonomy teacher feedback open-ended student response K-12 mathematics education correlation analysis factor analysis cluster analysis
- Format(s):
- Medium: X
- Right(s):
- Creative Commons Attribution 4.0 International
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Advancements in online learning platforms have revolutionized education in multiple different ways, transforming the learning experiences and instructional practices. The development of natural language processing and machine learning methods have helped understand and process student languages, comprehend their learning state, and build automated supports for teachers. With this, there has been a growing body of research in developing automated methods to assess students’ work both in mathematical and nonmathematical domains. These automated methods address questions of two categories; closed-ended (with limited correct answers) and open-ended (are often subjective and have multiple correct answers), where open-ended questions are mostly used by teachers to learn about their student’s understanding of a particular concept. Manually assessing and providing feedback to these open-ended questions is often arduous and time-consuming for teachers. For this reason, there have been several works to understand student responses to these open-ended questions to automate the assessment and provide constructive feedback to students. In this research, we seek to improve such a prior method for assessment and feedback suggestions for student open-ended works in mathematics. For this, we present an error analysis of the prior method ”SBERT-Canberra” for auto-scoring, explore various factors that contribute to the error of the method, and propose solutions to improve upon the method by addressing these error factors. We further intend to expand this approach by improving feedback suggestions for teachers to give to their students’ open-ended work.more » « less
-
Open-ended questions in mathematics are commonly used by teachers to monitor and assess students’ deeper conceptual understanding of content. Student answers to these types of questions often exhibit a combination of language, drawn diagrams and tables, and mathematical formulas and expressions that supply teachers with insight into the processes and strategies adopted by students in formulating their responses. While these student responses help to inform teachers on their students’ progress and understanding, the amount of variation in these responses can make it difficult and time-consuming for teachers to manually read, assess, and provide feedback to student work. For this reason, there has been a growing body of research in developing AI-powered tools to support teachers in this task. This work seeks to build upon this prior research by introducing a model that is designed to help automate the assessment of student responses to open-ended questions in mathematics through sentence-level semantic representations. We find that this model outperforms previously published benchmarks across three different metrics. With this model, we conduct an error analysis to examine characteristics of student responses that may be considered to further improve the method.more » « less
-
null (Ed.)Open-ended questions in mathematics are commonly used by teachers to monitor and assess students’ deeper conceptual understanding of content. Student answers to these types of questions often exhibit a combination of language, drawn diagrams and tables, and mathematical formulas and expressions that supply teachers with insight into the processes and strategies adopted by students in formulating their responses. While these student responses help to inform teachers on their students’ progress and understanding, the amount of variation in these responses can make it difficult and time-consuming for teachers to manually read, assess, and provide feedback to student work. For this reason, there has been a growing body of research in developing AI-powered tools to support teachers in this task. This work seeks to build upon this prior research by introducing a model that is designed to help automate the assessment of student responses to open-ended questions in mathematics through sentence-level semantic representations. We find that this model outperforms previouslypublished benchmarks across three different metrics. With this model, we conduct an error analysis to examine characteristics of student responses that may be considered to further improve the method.more » « less
-
null (Ed.)Open-ended questions in mathematics are commonly used by teachers to monitor and assess students’ deeper conceptual understanding of content. Student answers to these types of questions often exhibit a combination of language, drawn diagrams and tables, and mathematical formulas and expressions that supply teachers with insight into the processes and strategies adopted by students in formulating their responses. While these student responses help to inform teachers on their students’ progress and understanding, the amount of variation in these responses can make it difficult and time-consuming for teachers to manually read, assess, and provide feedback to student work. For this reason, there has been a growing body of research in developing AI-powered tools to support teachers in this task. This work seeks to build upon this prior research by introducing a model that is designed to help automate the assessment of student responses to open-ended questions in mathematics through sentence-level semantic representations. We find that this model outperforms previously published benchmarks across three different metrics. With this model, we conduct an error analysis to examine characteristics of student responses that may be considered to further improve the method.more » « less
An official website of the United States government
