The gaits of undulating animals arise from a complex interaction of their central nervous system, muscle, connective tissue, bone, and environment. As a simplifying assumption, many previous studies have often assumed that sufficient internal force is available to produce observed kinematics, thus not focusing on quantifying the interconnection between muscle effort, body shape, and external reaction forces. This interplay, however, is critical to locomotion performance in crawling animals, especially when accompanied by body viscoelasticity. Moreover, in bioinspired robotic applications, the body's internal damping is indeed a parameter that the designer can tune. Still, the effect of internal damping is not well understood. This study explores how internal damping affects the locomotion performance of a crawler with a continuous, viscoelastic, nonlinear beam model. Crawler muscle actuation is modeled as a traveling wave of bending moment propagating posteriorly along the body. Consistent with the friction properties of the scales of snakes and limbless lizards, environmental forces are modeled using anisotropic Coulomb friction. It is found that by varying the crawler body's internal damping, the crawler's performance can be altered, and distinct gaits could be achieved, including changing the net locomotion direction from forward to back. We will discuss this forward and backward control and identify the optimal internal damping for peak crawling speed.
more »
« less
This content will become publicly available on April 1, 2026
Neuromechanical Phase Lags and Gait Adaptation in the Nematode C. elegans
Undulation is a form of propulsion in which waves of bending propagate along an elongated, slender body. This locomotor strategy is used by organisms that span orders of magnitude in size and represent diverse habitats and species. Despite this diversity, common neuromechanical phenomena have been observed across biologically disparate undulators, as a result of common mechanics. For example, neuromechanical phase lags (NPL), a phenomenon where waves of muscle contraction travel at different speeds than the corresponding body bends, have been observed in fish, lamprey, and lizards. Existing theoretical descriptions of this phenomenon implicate the role of physical body-environment interactions. However, systematic experimental variation of body-environment interactions and measurement of the corresponding phase lags have not been performed. Using the nematode we measured phase lags across a range of environmental interaction regimes, performing calcium imaging in body wall muscles in fluids of varying viscosity and on agar. A mechanical model demonstrates that the measured phase lags are controlled by the relative strength of elastic torques within the body and resistive forces within the medium. We further show that the phase lags correspond with a difference in the wave number of the muscle activity and curvature patterns. Hence, the environmental forces that create NPL also act as a filter that shapes and modulates the gait articulated by the nervous system. Beyond nematodes, the simplicity of our model suggests that tuning body elasticity may serve as a general means of controlling the degree of mechanical wave modulation in other undulators.
more »
« less
- PAR ID:
- 10630689
- Publisher / Repository:
- PRX Life
- Date Published:
- Journal Name:
- PRX Life
- Volume:
- 3
- Issue:
- 2
- ISSN:
- 2835-8279
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Proprioceptive sensory feedback is crucial for the control of movement. In many ways, sensorimotor control loops in the neuromuscular system act as state feedback controllers. These controllers combine input commands and sensory feedback regarding the mechanical state of the muscle, joint or limb to modulate the mechanical output of the muscles. To understand how these control circuits function, it is necessary to understand fully the mechanical state variables that are signalled by proprioceptive sensory (propriosensory) afferents. Using new computational approaches, we demonstrate how combinations of group Ia and II muscle spindle afferent feedback can allow for tuned responses to force and the rate of force (or length and velocity) and how combinations of muscle spindle and Golgi tendon organ feedback can parse external and internal (self‐generated) force. These models suggest that muscle spindle feedback might be used to monitor and control muscle forces in addition to length and velocity and, when combined with tendon organ feedback, can distinguish self‐generated from externally imposed forces. Given that these models combine feedback from different sensory afferent types, they emphasize the utility of analysing muscle propriosensors as an integrated population, rather than independently, to gain a better understanding of propriosensory–motor control. Furthermore, these models propose a framework that links neural connectivity in the spinal cord with neuromechanical control. Although considerable work has been done on propriosensory–motor pathways in the CNS, our aim is to build upon this work by emphasizing the mechanical context.more » « less
-
For organisms to have robust locomotion, their neuromuscular organization must adapt to constantly changing environments. In jellyfish, swimming robustness emerges when marginal pacemakers fire action potentials throughout the bell’s motor nerve net, which signals the musculature to contract. The speed of the muscle activation wave is dictated by the passage times of the action potentials. However, passive elastic material properties also influence the emergent kinematics, with time scales independent of neuromuscular organization. In this multimodal study, we examine the interplay between these two time scales during turning. A three-dimensional computational fluid–structure interaction model of a jellyfish was developed to determine the resulting emergent kinematics, using bidirectional muscular activation waves to actuate the bell rim. Activation wave speeds near the material wave speed yielded successful turns, with a 76-fold difference in turning rate between the best and worst performers. Hyperextension of the margin occurred only at activation wave speeds near the material wave speed, suggesting resonance. This hyperextension resulted in a 34-fold asymmetry in the circulation of the vortex ring between the inside and outside of the turn. Experimental recording of the activation speed confirmed that jellyfish actuate within this range, and flow visualization using particle image velocimetry validated the corresponding fluid dynamics of the numerical model. This suggests that neuromechanical wave resonance plays an important role in the robustness of an organism’s locomotory system and presents an undiscovered constraint on the evolution of flexible organisms. Understanding these dynamics is essential for developing actuators in soft body robotics and bioengineered pumps.more » « less
-
ABSTRACT Animal locomotion is the result of complex and multi-layered interactions between the nervous system, the musculo-skeletal system and the environment. Decoding the underlying mechanisms requires an integrative approach. Comparative experimental biology has allowed researchers to study the underlying components and some of their interactions across diverse animals. These studies have shown that locomotor neural circuits are distributed in the spinal cord, the midbrain and higher brain regions in vertebrates. The spinal cord plays a key role in locomotor control because it contains central pattern generators (CPGs) – systems of coupled neuronal oscillators that provide coordinated rhythmic control of muscle activation that can be viewed as feedforward controllers – and multiple reflex loops that provide feedback mechanisms. These circuits are activated and modulated by descending pathways from the brain. The relative contributions of CPGs, feedback loops and descending modulation, and how these vary between species and locomotor conditions, remain poorly understood. Robots and neuromechanical simulations can complement experimental approaches by testing specific hypotheses and performing what-if scenarios. This Review will give an overview of key knowledge gained from comparative vertebrate experiments, and insights obtained from neuromechanical simulations and robotic approaches. We suggest that the roles of CPGs, feedback loops and descending modulation vary among animals depending on body size, intrinsic mechanical stability, time required to reach locomotor maturity and speed effects. We also hypothesize that distal joints rely more on feedback control compared with proximal joints. Finally, we highlight important opportunities to address fundamental biological questions through continued collaboration between experimentalists and engineers.more » « less
-
Abstract Motor systems show an overall robustness, but because they are highly nonlinear, understanding how they achieve robustness is difficult. In many rhythmic systems, robustness against perturbations involves response of both the shape and the timing of the trajectory. This makes the study of robustness even more challenging. To understand how a motor system produces robust behaviors in a variable environment, we consider a neuromechanical model of motor patterns in the feeding apparatus of the marine mollusk Aplysia californica (Shaw et al. in J Comput Neurosci 38(1):25–51, 2015; Lyttle et al. in Biol Cybern 111(1):25–47, 2017). We established in (Wang et al. in SIAM J Appl Dyn Syst 20(2):701–744, 2021. https://doi.org/10.1137/20M1344974 ) the tools for studying combined shape and timing responses of limit cycle systems under sustained perturbations and here apply them to study robustness of the neuromechanical model against increased mechanical load during swallowing. Interestingly, we discover that nonlinear biomechanical properties confer resilience by immediately increasing resistance to applied loads. In contrast, the effect of changed sensory feedback signal is significantly delayed by the firing rates’ hard boundary properties. Our analysis suggests that sensory feedback contributes to robustness in swallowing primarily by shifting the timing of neural activation involved in the power stroke of the motor cycle (retraction). This effect enables the system to generate stronger retractor muscle forces to compensate for the increased load, and hence achieve strong robustness. The approaches that we are applying to understanding a neuromechanical model in Aplysia , and the results that we have obtained, are likely to provide insights into the function of other motor systems that encounter changing mechanical loads and hard boundaries, both due to mechanical and neuronal firing properties.more » « less
An official website of the United States government
