Abstract The ongoing global temperature rise enhances permafrost thaw in the Arctic, allowing Pleistocene‐aged frozen soil organic matter to become available for microbial degradation and production of greenhouse gases, particularly methane. Here, we examined the extent and mechanism of anaerobic oxidation of methane (AOM) in the sediments of four interior Alaska thermokarst lakes, which formed and continue to expand as a result of ice‐rich permafrost thaw. In cores of surface (~ 1 m) lake sediments we quantified methane production (methanogenesis) and AOM rates using anaerobic incubation experiments in low (4°C) and high (16°C) temperatures. Methanogenesis rates were measured by the accumulation of methane over ~ 90 d, whereas AOM rates were measured by adding labeled‐13CH4and measuring the produced dissolved inorganic13C. Our results demonstrate that while methanogenesis was vigorous in these anoxic sediments, AOM was lower by two orders of magnitude. In almost all sediment depths and temperatures, AOM rates remained less than 2% of the methanogenesis rates. Experimental evidence indicates that the AOM is strongly related to methanogens, as the addition of a methanogens' inhibitor prevented AOM. Variety of electron acceptor additions did not stimulate AOM, and methanotrophs were scarcely detected. These observations suggest that the AOM signals in the incubation experiments might be a result of enzymatic reversibility (“back‐flux”) during CH4production, rather than thermodynamically favorable AOM. Regardless of the mechanism, the quantitative results show that near surface (< 1‐m) thermokarst sediments in interior Alaska have little to no buffer mechanisms capable of attenuating methane production in a warming climate. 
                        more » 
                        « less   
                    This content will become publicly available on June 27, 2026
                            
                            Clumped isotopes of methane trace bioenergetics in the environment
                        
                    
    
            Methane is a major greenhouse gas and a key component of global biogeochemical cycles. Microbial methane often deviates from isotope and isotopolog equilibrium in surface environments but approaches equilibrium in deep subsurface sediments. The origin of this near-equilibrium isotopic signature in methane, whether directly produced by methanogens or achieved through anaerobic oxidation of methane (AOM), remains uncertain. Here, we show that, in the absence of AOM, microbial methane produced from deep-sea sediments exhibits isotopolog compositions approaching thermodynamic equilibrium due to energy limitation. In contrast, microbial methane from salt marsh and thermokarst lakes exhibits significant hydrogen and clumped isotopic disequilibrium due to high free-energy availability. We propose that clumped isotopologs of methane provide a proxy for characterizing the bioenergetics of environments for methane production. Together, these observations demonstrate methane clumped isotopes as a powerful tool to better understand the relation between methane metabolisms and the energy landscape in natural environments. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10630823
- Publisher / Repository:
- American Association for the Advancement of Science
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 11
- Issue:
- 26
- ISSN:
- 2375-2548
- Subject(s) / Keyword(s):
- methane isotopologues, methanogenesis, salt marsh, santa barbara basin, guaymas basin, thermocast, methane oxidation
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Anaerobic oxidation of methane (AOM) is hypothesized to occur through reverse hydrogenotrophic methanogenesis in marine sediments because sulfate reducers pull hydrogen concentrations so low that reverse hydrogenotrophic methanogenesis is exergonic. If true, hydrogenotrophic methanogenesis can theoretically co-occur with sulfate reduction if the organic matter is so labile that fermenters produce more hydrogen than sulfate reducers can consume, causing hydrogen concentrations to rise. Finding accumulation of biologically-produced methane in sulfate-containing organic-rich sediments would therefore support the theory that AOM occurs through reverse hydrogenotrophic methanogenesis since it would signal the absence of net AOM in the presence of sulfate. Methods16S rRNA gene libraries were compared to geochemistry and incubations in high depth-resolution sediment cores collected from organic-rich Cape Lookout Bight, North Carolina. ResultsWe found that methane began to accumulate while sulfate is still abundant (6–8 mM). Methane-cycling archaeaANME-1,Methanosarciniales, andMethanomicrobialesalso increased at these depths. Incubations showed that methane production in the upper 16 cm in sulfate-rich sediments was biotic since it could be inhibited by 2-bromoethanosulfonoic acid (BES). DiscussionWe conclude that methanogens mediate biological methane production in these organic-rich sediments at sulfate concentrations that inhibit methanogenesis in sediments with less labile organic matter, and that methane accumulation and growth of methanogens can occur under these conditions as well. Our data supports the theory that H2concentrations, rather than the co-occurrence of sulfate and methane, control whether methanogenesis or AOM via reverse hydrogenotrophic methanogenesis occurs. We hypothesize that the high amount of labile organic matter at this site prevents AOM, allowing methane accumulation when sulfate is low but still present in mM concentrations.more » « less
- 
            Methane, a greenhouse gas and energy source, is commonly studied using stable isotope signals as proxies for its formation processes. In subsurface environments, methane often exhibits equilibrium isotopic signals, but the equilibration process has never been demonstrated in the laboratory. We cocultured a hydrogenotrophic methanogen with an H2-producing bacterium under conditions (55°C, 10 megapascals) simulating a methane-bearing subsurface. This resulted in near-complete reversibility of methanogenesis, leading to equilibria for both hydrogen and carbon isotopes. The methanogen not only equilibrated kinetic isotope signals of initially produced methane but also modified the isotope signals of amended thermogenic methane. These findings suggest that hydrogenotrophic methanogenesis can overwrite the isotope signals of subsurface methane, distorting proxies for its origin and formation temperature—insights crucial for natural gas exploration.more » « less
- 
            Abstract Organic and inorganic stable isotopes of lacustrine carbonate sediments are commonly used in reconstructions of ancient terrestrial ecosystems and environments. Microbial activity and local hydrological inputs can alter porewater chemistry (e.g., pH, alkalinity) and isotopic composition (e.g., δ18Owater, δ13CDIC), which in turn has the potential to impact the stable isotopic compositions recorded and preserved in lithified carbonate. The fingerprint these syngenetic processes have on lacustrine carbonate facies is yet unknown, however, and thus, reconstructions based on stable isotopes may misinterpret diagenetic records as broader climate signals. Here, we characterize geochemical and stable isotopic variability of carbonate minerals, organic matter, and water within one modern lake that has known microbial influences (e.g., microbial mats and microbialite carbonate) and combine these data with the context provided by 16S rRNA amplicon sequencing community profiles. Specifically, we measure oxygen, carbon, and clumped isotopic compositions of carbonate sediments (δ18Ocarb, δ13Ccarb, ∆47), as well as carbon isotopic compositions of bulk organic matter (δ13Corg) and dissolved inorganic carbon (DIC; δ13CDIC) of lake and porewater in Great Salt Lake, Utah from five sites and three seasons. We find that facies equivalent to ooid grainstones provide time‐averaged records of lake chemistry that reflect minimal alteration by microbial activity, whereas microbialite, intraclasts, and carbonate mud show greater alteration by local microbial influence and hydrology. Further, we find at least one occurrence of ∆47isotopic disequilibrium likely driven by local microbial metabolism during authigenic carbonate precipitation. The remainder of the carbonate materials (primarily ooids, grain coatings, mud, and intraclasts) yield clumped isotope temperatures (T(∆47)), δ18Ocarb, and calculated δ18Owaterin isotopic equilibrium with ambient water and temperature at the time and site of carbonate precipitation. Our findings suggest that it is possible and necessary to leverage diverse carbonate facies across one sedimentary horizon to reconstruct regional hydroclimate and evaporation–precipitation balance, as well as identify microbially mediated carbonate formation.more » « less
- 
            Abstract Deep marine sediments (>1mbsf) harbor ~26% of microbial biomass and are the largest reservoir of methane on Earth. Yet, the deep subsurface biosphere and controls on its contribution to methane production remain underexplored. Here, we use a multidisciplinary approach to examine methanogenesis in sediments (down to 295 mbsf) from sites with varying degrees of thermal alteration (none, past, current) at Guaymas Basin (Gulf of California) for the first time. Traditional (13C/12C and D/H) and multiply substituted (13CH3D and 12CH2D2) methane isotope measurements reveal significant proportions of microbial methane at all sites, with the largest signal at the site with past alteration. With depth, relative microbial methane decreases at differing rates between sites. Gibbs energy calculations confirm methanogenesis is exergonic in Guaymas sediments, with methylotrophic pathways consistently yielding more energy than the canonical hydrogenotrophic and acetoclastic pathways. Yet, metagenomic sequencing and cultivation attempts indicate that methanogens are present in low abundance. We find only one methyl-coenzyme M (mcrA) sequence within the entire sequencing dataset. Also, we identify a wide diversity of methyltransferases (mtaB, mttB), but only a few sequences phylogenetically cluster with methylotrophic methanogens. Our results suggest that the microbial methane in the Guaymas subsurface was produced over geologic time by relatively small methanogen populations, which have been variably influenced by thermal sediment alteration. Higher resolution metagenomic sampling may clarify the modern methanogen community. This study highlights the importance of using a multidisciplinary approach to capture microbial influences in dynamic, deep subsurface settings like Guaymas Basin.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
