skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2026

Title: How students engage with learning analytics: Access, action-taking, and learning routines with message-based information to support collaborative annotation
Award ID(s):
1918751
PAR ID:
10630978
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Computers & Education
Volume:
232
Issue:
C
ISSN:
0360-1315
Page Range / eLocation ID:
105280
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Abstract Recent years have witnessed a rocketing growth of machine learning methods on graph data, especially those powered by effective neural networks. Despite their success in different real‐world scenarios, the majority of these methods on graphs only focus on predictive or descriptive tasks, but lack consideration of causality. Causal inference can reveal the causality inside data, promote human understanding of the learning process and model prediction, and serve as a significant component of artificial intelligence (AI). An important problem in causal inference is causal effect estimation, which aims to estimate the causal effects of a certain treatment (e.g., prescription of medicine) on an outcome (e.g., cure of disease) at an individual level (e.g., each patient) or a population level (e.g., a group of patients). In this paper, we introduce the background of causal effect estimation from observational data, envision the challenges of causal effect estimation with graphs, and then summarize representative approaches of causal effect estimation with graphs in recent years. Furthermore, we provide some insights for future research directions in related area. Link to video abstract:https://youtu.be/BpDPOOqw‐ns 
    more » « less