skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2026

Title: Faster Classification of Time-Series Input Streams
Deep learning–based classifiers are widely used for perception in autonomous Cyber-Physical Systems (CPS’s). However, such classifiers rarely offer guarantees of perfect accuracy while being optimized for efficiency. To support safety-critical perception, ensembles of multiple different classifiers working in concert are typically used. Since CPS’s interact with the physical world continuously, it is not unreasonable to expect dependencies among successive inputs in a stream of sensor data. Prior work introduced a classification technique that leverages these inter-input dependencies to reduce the average time to successful classification using classifier ensembles. In this paper, we propose generalizations to this classification technique, both in the improved generation of classifier cascades and the modeling of temporal dependencies. We demonstrate, through theoretical analysis and numerical evaluation, that our approach achieves further reductions in average classification latency compared to the prior methods.  more » « less
Award ID(s):
2104181 2216971 2107280
PAR ID:
10631073
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Mancuso, Renato
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Volume:
335
ISSN:
1868-8969
Page Range / eLocation ID:
13:1-13:22
Subject(s) / Keyword(s):
Classification Deep Learning Sensor data streams IDK classifiers Computer systems organization → Real-time systems
Format(s):
Medium: X Size: 22 pages; 1436239 bytes Other: application/pdf
Size(s):
22 pages 1436239 bytes
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper introduces and evaluates a general construct for trading off accuracy and overall execution duration in classification-based machine perception problems—namely, the generalized IDK classifier cascade . The aim is to select the optimal sequence of classifiers required to minimize the expected (i.e. average) execution duration needed to achieve successful classification, subject to a constraint on quality, and optionally a latency constraint on the worst-case execution duration. An IDK classifier is a software component that attempts to categorize each input provided to it into one of a fixed set of classes, returning “I Don’t Know” (IDK) if it is unable to do so with the required level of confidence. An ensemble of several different IDK classifiers may be available for the same classification problem, offering different trade-offs between effectiveness (i.e. the probability of successful classification) and timeliness (i.e. execution duration). A model for representing such characteristics is defined, and a method is proposed for determining the values of the model parameters for a given ensemble of IDK classifiers. Optimal algorithms are developed for sequentially ordering IDK classifiers into an IDK cascade, such that the expected duration to successfully classify an input is minimized, optionally subject to a latency constraint on the worst-case overall execution duration of the IDK cascade. The entire methodology is applied to two real-world case studies. In contrast to prior work, the methodology developed in this paper caters for arbitrary dependences between the probabilities of successful classification for different IDK classifiers. Effective practical solutions are developed considering both single and multiple processors. 
    more » « less
  2. Abstract Minimizing an adversarial surrogate risk is a common technique for learning robust classifiers. Prior work showed that convex surrogate losses are not statistically consistent in the adversarial context – or in other words, a minimizing sequence of the adversarial surrogate risk will not necessarily minimize the adversarial classification error. We connect the consistency of adversarial surrogate losses to properties of minimizers to the adversarial classification risk, known asadversarial Bayes classifiers. Specifically, under reasonable distributional assumptions, a convex surrogate loss is statistically consistent for adversarial learning iff the adversarial Bayes classifier satisfies a certain notion of uniqueness. 
    more » « less
  3. AnIDK classifieris a computing component that categorizes inputs into one of a number of classes, if it is able to do so with the required level of confidence, otherwise it returns “I Don’t Know” (IDK).IDK classifier cascadeshave been proposed as a way of balancing the needs for fast response and high accuracy in classification-based machine perception. Efficient algorithms for the synthesis of IDK classifier cascades have been derived; however, the responsiveness of these cascades is highly dependent on the accuracy of predictions regarding the run-time behavior of the classifiers from which they are built. Accurate predictions of such run-time behavior is difficult to obtain for many of the classifiers used for perception. By applying thealgorithms using predictionsframework, we propose efficient algorithms for the synthesis of IDK classifier cascades that arerobustto inaccurate predictions in the following sense: the IDK classifier cascades synthesized by our algorithms have short expected execution durations when the predictions are accurate, and these expected durations increase only within specified bounds when the predictions are inaccurate. 
    more » « less
  4. Fall prevention has always been a crucial topic for injury prevention. Research shows that real-time posture monitoring and subsequent fall prevention are important for the prevention of fall-related injuries. In this research, we determine a real-time posture classifier by comparing classical and deep machine learning classifiers in terms of their accuracy and robustness for posture classification. For this, multiple classical classifiers, including classical machine learning, support vector machine, random forest, neural network, and Adaboost methods, were used. Deep learning methods, including LSTM and transformer, were used for posture classification. In the experiment, joint data were obtained using an RGBD camera. The results show that classical machine learning posture classifier accuracy was between 75% and 99%, demonstrating that the use of classical machine learning classification alone is sufficient for real-time posture classification even with missing joints or added noise. The deep learning method LSTM was also effective in classifying the postures with high accuracy, despite incurring a significant computational overhead cost, thus compromising the real-time posture classification performance. The research thus shows that classical machine learning methods are worthy of our attention, at least, to consider for reuse or reinvention, especially for real-time posture classification tasks. The insight of using a classical posture classifier for large-scale human posture classification is also given through this research. 
    more » « less
  5. A bstract There has been substantial progress in applying machine learning techniques to classification problems in collider and jet physics. But as these techniques grow in sophistication, they are becoming more sensitive to subtle features of jets that may not be well modeled in simulation. Therefore, relying on simulations for training will lead to sub-optimal performance in data, but the lack of true class labels makes it difficult to train on real data. To address this challenge we introduce a new approach, called Tag N’ Train (TNT), that can be applied to unlabeled data that has two distinct sub-objects. The technique uses a weak classifier for one of the objects to tag signal-rich and background-rich samples. These samples are then used to train a stronger classifier for the other object. We demonstrate the power of this method by applying it to a dijet resonance search. By starting with autoencoders trained directly on data as the weak classifiers, we use TNT to train substantially improved classifiers. We show that Tag N’ Train can be a powerful tool in model-agnostic searches and discuss other potential applications. 
    more » « less