skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 26, 2026

Title: DNA origami directed nanometer-scale integration of colloidal quantum emitters with silicon photonics
Abstract Incorporation of colloidal quantum emitters into silicon-based photonic devices would enable major advances in quantum optics. However, deterministic placement of individual sub-10 nm colloidal particles onto micron-sized photonic structures with nanometer-scale precision remains an outstanding challenge. Here, we introduce Cavity-Shape Modulated Origami Placement (CSMOP) that leverages the structural programmability of DNA origami to precisely deposit colloidal nanomaterials within lithographically-defined resist cavities. CSMOP enables clean and accurate patterning of origami templates onto photonic chips with high yields. Soft-silicification-passivation stabilizes deposited origamis, while preserving their binding sites to attach and align colloidal quantum rods (QRs) to control their nanoscale positions and emission polarization. We demonstrate QR integration with photonic device structures including waveguides, micro-ring resonators, and bullseye photonic cavities. CSMOP therefore offers a general platform for the integration of colloidal quantum materials into photonic circuits, with broad potential to empower quantum science and technology.  more » « less
Award ID(s):
2240309 1956054
PAR ID:
10631180
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Arrays of neutral atoms trapped in optical tweezers have emerged as a leading platform for quantum information processing and quantum simulation due to their scalability, reconfigurable connectivity, and high-fidelity operations. Individual atoms are promising candidates for quantum networking due to their capability to emit indistinguishable photons that are entangled with their internal atomic states. Integrating atom arrays with photonic interfaces would enable distributed architectures in which nodes hosting many processing qubits could be efficiently linked together via the distribution of remote entanglement. However, many atom array techniques cease to work in close proximity to photonic interfaces, with atom detection via standard fluorescence imaging presenting a major challenge due to scattering from nearby photonic devices. Here, we demonstrate an architecture that combines atom arrays with up to 64 optical tweezers and a millimeter-scale photonic chip hosting more than 100 nanophotonic cavities. We achieve high-fidelity ( ~ 99.2%), background-free imaging in close proximity to nanofabricated cavities using a multichromatic excitation and detection scheme. The atoms can be imaged while trapped a few hundred nanometers above the dielectric surface, which we verify using Stark shift measurements of the modified trapping potential. Finally, we rearrange atoms into defect-free arrays and load them simultaneously onto the same or multiple devices. 
    more » « less
  2. Abstract Control over the copy number and nanoscale positioning of quantum dots (QDs) is critical to their application to functional nanomaterials design. However, the multiple non-specific binding sites intrinsic to the surface of QDs have prevented their fabrication into multi-QD assemblies with programmed spatial positions. To overcome this challenge, we developed a general synthetic framework to selectively attach spatially addressable QDs on 3D wireframe DNA origami scaffolds using interfacial control of the QD surface. Using optical spectroscopy and molecular dynamics simulation, we investigated the fabrication of monovalent QDs of different sizes using chimeric single-stranded DNA to control QD surface chemistry. By understanding the relationship between chimeric single-stranded DNA length and QD size, we integrated single QDs into wireframe DNA origami objects and visualized the resulting QD-DNA assemblies using electron microscopy. Using these advances, we demonstrated the ability to program arbitrary 3D spatial relationships between QDs and dyes on DNA origami objects by fabricating energy-transfer circuits and colloidal molecules. Our design and fabrication approach enables the geometric control and spatial addressing of QDs together with the integration of other materials including dyes to fabricate hybrid materials for functional nanoscale photonic devices. 
    more » « less
  3. Abstract A key obstacle for all quantum information science and engineering platforms is their lack of scalability. The discovery of emergent quantum phenomena and their applications in active photonic quantum technologies have been dominated by work with single atoms, self‐assembled quantum dots, or single solid‐state defects. Unfortunately, scaling these systems to many quantum nodes remains a significant challenge. Solution‐processed quantum materials are uniquely positioned to address this challenge, but the quantum properties of these materials have remained generally inferior to those of solid‐state emitters or atoms. Additionally, systematic integration of solution‐processed materials with dielectric nanophotonic structures has been rare compared to other solid‐state systems. Recent progress in synthesis processes and nanophotonic engineering, however, has demonstrated promising results, including long coherence times of emitted single photons and deterministic integration of emitters with dielectric nano‐cavities. In this review article, these recent experiments using solution‐processed quantum materials and dielectric nanophotonic structures are discussed. The progress in non‐classical light state generation, exciton‐polaritonics for quantum simulation, and spin‐physics in these materials is discussed and an outlook for this emerging research field is provided. 
    more » « less
  4. We demonstrate heterogeneous integration of solid-state nanophotonic cavities into a scalable photonic platform as an efficient optical interface for quantum memories based on diamond color centers. 
    more » « less
  5. DNA origami is a modular platform for the combination of molecular and colloidal components to create optical, electronic, and biological devices. Integration of such nanoscale devices with microfabricated connectors and circuits is challenging: Large numbers of freely diffusing devices must be fixed at desired locations with desired alignment. We present a DNA origami molecule whose energy landscape on lithographic binding sites has a unique maximum. This property enabled device alignment within 3.2° on silica surfaces. Orientation was absolute (all degrees of freedom were specified) and arbitrary (the orientation of every molecule was independently specified). The use of orientation to optimize device performance was shown by aligning fluorescent emission dipoles within microfabricated optical cavities. Large-scale integration was demonstrated with an array of 3456 DNA origami with 12 distinct orientations that indicated the polarization of excitation light. 
    more » « less