The Rising Engineering Education Faculty Experience program (REEFE) is a professional development program that connects graduate students in engineering education with faculty members at teaching-focused institutions. The program goal is to simultaneously support faculty growth in engineering education and graduate student growth as academic change agents. Our program has transitioned from a partnership between one engineering education graduate program and one engineering institution to a consortium of engineering education graduate programs that sends students to multiple institutions across the country. The REEFE Consortium also developed a unique partnership with the Making Academic Change Happen initiative to offer continuous training to graduate students during their REEFE experience. Many positive outcomes have come from the development of the REEFE Consortium, including better graduate training in research at the coordinating institution, a better understanding of program logistics, and new and strengthened professional relationships. We discovered a number of challenges associated with providing intensive professional development opportunities to graduate students, including timing of experiences relative to degree progress, loss of connection to the home research community, and financial impact, especially as it relates to travel and housing. While a search of existing literature in professional development in higher education has provided best practices for existing programs, there is little to no available research highlighting barriers that exist to offering different types of professional development opportunities to graduate student populations. These barriers are important to highlight as they provide critical information needed in the design and decision making for those seeking to create useful professional development opportunities for graduate populations. This paper provides an updated description of the Rising Engineering Education Faculty Experience program as we attempt to scale the program. We summarize the existing literature on barriers to participation in professional development opportunities for graduate students. Finally, we describe how REEFE both addresses and fails to address these barriers. 
                        more » 
                        « less   
                    This content will become publicly available on June 1, 2026
                            
                            Investigating Opportunities for Diversity and Growth in the Landscape of Quantum Information Science Engineering Education in the U.S.
                        
                    
    
            Quantum Information Science and Engineering (QISE) is rapidly gaining interest across a wide range of disciplines. As QISE continues to evolve, engineering will play an increasingly critical role in advancing quantum technologies. While efforts to characterize introductory QISE courses are underway, a comprehensive understanding of QISE education across the United States remains lacking. Developing a broad understanding of the QISE education landscape is crucial for addressing the needs of the growing quantum industry and ensuring equitable access for a diverse range of participants. This paper presents part of an ongoing effort to characterize the current landscape of QISE courses and degree programs in higher education in the US. To achieve this, we used publicly available information from university and college websites to capture information on over 8000 courses that address quantum in some way and nearly 90 QISE specific programs (e.g., degrees, minors, certificates). The majority of these programs are interdisciplinary and include engineering; 14 of them are housed exclusively in engineering departments. We find most programs are offered at research intensive institutions. Our results showcase an opportunity for program developers at non-research intensive institutions to justify the creation of QISE programs, which would also address calls from different stakeholders in QISE education for a more diverse QISE workforce. We suggest strategies based on the findings of this study such as integrating QISE into existing courses, investing in the development of QISE courses and programs at non-PhD-granting institutions, and making courses with QISE content accessible to students from a variety of majors. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2333074
- PAR ID:
- 10631213
- Publisher / Repository:
- ASEE Conferences
- Date Published:
- Format(s):
- Medium: X
- Location:
- Montreal, Quebec, Canada
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Conducting ecological research in a way that addresses complex, real‐world problems requires a diverse, interdisciplinary and quantitatively trained ecology and environmental science workforce. This begins with equitably training students in ecology, interdisciplinary science, and quantitative skills at the undergraduate level. Understanding the current undergraduate curriculum landscape in ecology and environmental sciences allows for targeted interventions to improve equitable educational opportunities. Ecological forecasting is a sub‐discipline of ecology with roots in interdisciplinary and quantitative science. We use ecological forecasting to show how ecology and environmental science undergraduate curriculum could be evaluated and ultimately restructured to address the needs of the 21stcentury workforce. To characterize the current state of ecological forecasting education, we compiled existing resources for teaching and learning ecological forecasting at three curriculum levels: online resources; US university courses on ecological forecasting; and US university courses on topics related to ecological forecasting. We found persistent patterns (1) in what topics are taught to US undergraduate students at each of the curriculum levels; and (2) in the accessibility of resources, in terms of course availability at higher education institutions in the United States. We developed and implemented programs to increase the accessibility and comprehensiveness of ecological forecasting undergraduate education, including initiatives to engage specifically with Native American undergraduates and online resources for learning quantitative concepts at the undergraduate level. Such steps enhance the capacity of ecological forecasting to be more inclusive to undergraduate students from diverse backgrounds and expose more students to quantitative training.more » « less
- 
            Driven in large part by the National Quantum Initiative Act of 2018, quantum information science (QIS) coursework and degree programs are rapidly spreading across U.S. institutions. Yet prior work suggests that access to quantum workforce education is unequally distributed, disproportionately benefiting students at private research-focused institutions whose student bodies are unrepresentative of U.S. higher education as a whole. We use regression analysis to analyze the distribution of QIS coursework across 456 institutions of higher learning as of Fall 2022, identifying statistically significant disparities across institutions in particular along the axes of institution classification, funding, and geographic distribution suggesting today’s QIS education programs are largely failing to reach low-income and rural students. We also conduct a brief analysis of the distribution of emerging dedicated QIS degree programs, discovering much the same trends. We conclude with a discussion of implications for educators, policymakers, and education researchers including specific policy recommendations to direct investments in QIS education to schools serving low-income and rural students, leverage existing grassroots diversity and inclusion initiatives that have arisen within the quantum community, and update and modernize procedures for collecting QIS educational data to better track these trends.more » « less
- 
            Broadening participation in engineering among underrepresented minority students remains a big challenge for institutions of higher education. Since a large majority of underrepresented students attend community colleges, engineering transfer programs at these community colleges can play an important role in addressing this challenge. However, for most community college engineering programs, developing strategies and programs to increase the number and diversity of students successfully pursuing careers in engineering is especially challenging due to limited expertise, shrinking resources, and continuing budget crises. This paper is a description of how a small engineering transfer program at a Hispanic-Serving community college in California developed effective partnerships with high schools, other institutions of higher education, and industry partners in order to create opportunities for underrepresented community college students to excel in engineering. Developed through these partnerships are programs for high school students, current community college students, and community college engineering faculty. Programs for high school students include a) the Summer Engineering Institute – a two-week residential summer camp for sophomore and junior high school students, and b) the STEM Institute – a three-week program for high school freshmen to explore STEM fields. Academic and support programs for college students include: a) Math Jam – a one-week intensive math placement test review and preparation program; b) a scholarship and mentoring program academically talented and financially needy STEM students; c) a two-week introduction to research program held during the winter break to prepare students for research internships; d) a ten-week summer research internship program; e) Physics Jam – an intensive program to prepare students for success in Physics; f) Embedded Peer Instruction Cohort – a modified Supplemental Instruction program for STEM courses; g) STEM Speaker Series – a weekly presentation by professionals talking about their career and educational paths. Programs for community college STEM faculty and transfer programs include: a) Summer Engineering Teaching Institute – a two-day teaching workshop for community college STEM faculty; b) Joint Engineering Program – a consortium of 28 community college engineering programs all over California to align curriculum, improve teaching effectiveness, improve the engineering transfer process, and strengthen community college engineering transfer programs; c) Creating Alternative Learning Strategies for Transfer Engineering Programs – a collaborative program that aims to increase access to engineering courses for community college students through online instruction and alternative classroom models; and d) California Lower-Division Engineering Articulation Workshop – to align the engineering curriculum. In addition to describing the development and implementation of these programs, the paper will also provide details on how they have contributed to increasing the interest, facilitating the entry, improving the retention and enhancing the success of underrepresented minority students in engineering, as well as contributing to the strengthening of the community college engineering education pipeline.more » « less
- 
            In contrast to the dynamic treatment of other aspects of the curriculum, and despite being at the center of chemical engineering education, laboratory experiments have remained largely unchanged for decades. To characterize the potential impact changes to laboratory courses could have, we explored student perceptions across a department and characterized the kinds of opportunities students have to use their agency in these courses across universities. We used a survey to measure students’ sense of agency across several laboratory courses in a chemical engineering department. We found students in laboratory courses across the chemical engineering laboratory sequence, including those engaged in authentic course-based research did not perceive the experiments as agentive or authentic. We infer students draw upon abundant low-agency experiences in laboratory experiments. We report on the agency that instructors report students possessing across two chemical engineering departments to understand variation across institutions. Maximizing learning in laboratory courses may hinge on clearer communication about authentic experiments or systematic redesign of earlier courses.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
