skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Social-ecological models with social hierarchy and spatial structure applied to small-scale fisheries
Socio-ecological models combine ecological systems with human social dynamics in order to better understand human interactions with the environment. To model human behavior, replicator dynamics can be used to model how societal influence and financial costs can change opinions about resource extraction. Previous research on replicator dynamics has shown how evolving opinions on conservation can change how humans interact with their environment and therefore change population dynamics of the harvested species. However, social-ecological models often assume that human societies are homogeneous with no social structure. Building on previous work on social-ecological models, we develop a two-patch socio-ecological model with social hierarchy in order to study the interactions between spatial dynamics and social inequity. We found that fish movement between patches is a major driver of model dynamics, especially when the two patches exhibit different social equality and fishing practices. Further, we found that the societal influence between groups of harvesters was essential to ensuring stable fishery dynamics. Next, we developed a case study of two independently managed fisheries that were connected by fish movement where one human group fishes sustainably while another was over-harvests, resulting in a fishery collapse of both patches. We also found that because in this model, the influence of one human patch on another only communicates the amount of each catch and no fishing strategies were employed, increased social influence decreased the sustainability of the fishery. The findings of this study indicate the importance of including spatial components to socio- ecological models and highlights the importance of understanding species’ movements when making conservation decisions. Further, we demonstrate how incorporating fishing methods from outside sources can result in higher stability of the harvested population, demonstrating the need for effective communication across management regimes.  more » « less
Award ID(s):
2409030 1923707
PAR ID:
10631265
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Theoretical Ecology
Volume:
17
Issue:
4
ISSN:
1874-1738
Page Range / eLocation ID:
325 to 336
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Many coral reefs have shifted from coral‐ to macroalgae‐dominated community states, heightening the need to understand resilience of coral communities. Fishing on herbivores often reduces resilience of the coral state, as lower herbivory fosters macroalgal establishment. Despite the acknowledged importance of fishing, relatively little attention has been paid to how fishers change their behavior as macroalgae overgrow reefs, or how the resulting dynamic feedbacks might affect resilience. We address these questions in Moorea, French Polynesia, where local fishers target herbivorous fishes and where shifts to algal dominance have occurred on some lagoon reefs. We quantified fisher preferences for reef habitats where they target various taxa. For the two most ecologically important taxa of herbivores targeted in the fishery, parrotfish (Scaridae) and unicornfish (Naso), fishers preferred to harvest from locations with less macroalgae. We incorporated these habitat preferences into a spatially explicit social–ecological model of reef dynamics to explore consequences of changes in fishing behavior for resilience of the coral state, particularly following disturbance. Fishing that targets low‐macroalgae locations typically generates resilience by facilitating local recovery of herbivores and thus of coral in the less‐targeted macroalgae‐dominated patches. However, the resulting movement of fishers across the seascape can sometimes create fragility; if coral loss is widespread, avoidance of macroalgae concentrates fishing in patches having the highest coral cover, resulting in loss of coral via reduced herbivory. Our results emphasize that resilience and coral‐macroalgae regime shifts cannot be understood without considering humans as a dynamic part of the system. 
    more » « less
  2. In southern New England, rapid ocean warming over the past two decades has caused substantial redistributions of fishes, invertebrates, and the fisheries they support. The rapid emergence of the warm water-tolerant Jonah crab (Cancer borealis) fishery, once discarded as bycatch from the now declining lobster fishery, illustrates a prime example of climate-adaptive shifts in southern New England fisheries. However, limited data exist on the basic life history of Jonah crabs, despite their growing economic and societal value. This hinders ocean management capacity to meet multiple ecological, economic, and socio-cultural goals of sustainable harvest. Off the southern coast of Rhode Island, Jonah crabs are currently harvested in two fishery zones (inshore and offshore) delineated as holdovers from the lobster management zones. Jonah crabs landed in the offshore fishing zone are significantly larger, on average, than those landed in the inshore fishing zone. This presentation gives an overview of a study developed to test the hypothesis that these size differences reflect ontogenetic migration of Jonah crabs from the inshore to offshore fishing zones. To do this, we developed seasonally resolved isoscapes (isotope maps) of the region, which revealed distinct geospatial gradients in environmental stable isotope values between inshore and offshore necessary to track potential movement of Jonah crabs between fishing zones. We then used stable isotope analysis of three Jonah crab tissues with differential metabolic turnover times: the carapace (reflecting residence one year ago), muscle (reflecting residence averaged over the last ~4 months), and hepatopancreas (reflecting residence averaged over the last ~4 weeks) to construct an “isotopic clock” of residence throughout the regional isoscapes. This work provides key data on critical life history characteristics of the Jonah crab through a collaborative effort by scientists at the University of Rhode Island and the Rhode Island Department of Environmental Management to inform management decisions on this emerging climate-adaptive fishery. 
    more » « less
  3. Using social media, we collect evidence for how nearshore fisheries are impacted by the global COVID-19 pandemic in Hawai’i. We later confirm our social media findings and obtain a more complete understanding of the changes in nearshore non-commercial fisheries in Hawai’i through a more conventional approach—speaking directly with fishers. Resource users posted photographs to social media nearly three times as often during the pandemic with nearly double the number of fishes pictured per post. Individuals who fished for subsistence were more likely to increase the amount of time spent fishing and relied more on their catch for food security. Furthermore, individuals fishing exclusively for subsistence were more likely to fish for different species during the pandemic than individuals fishing recreationally. Traditional data collection methods are resource-intensive and this study shows that during times of rapid changes, be it ecological or societal, social media can more quickly identify how near shore marine resource use adapts. As climate change threatens additional economic and societal disturbances, it will be necessary for resource managers to collect reliable data efficiently to better target monitoring and management efforts. 
    more » « less
  4. ABSTRACT Lobatus gigas, the queen conch, is a central component of Caribbean cuisine but over-fishing of juveniles has threatened the stability of wild populations. Strombid gastropods, upon reaching sexual maturity, cease growing along the shell length axis and continue growing in width via a flared and thickened shell lip. This morphology serves as a useful indicator of an individual's sexual maturity. Here we examine temporal trends in population demographics, size, and morphology of harvested L. gigas individuals over the last ∼1 ky from San Salvador Island, the Bahamas to quantify the dynamics of human-induced stress on the local queen conch fishery. We collected 284 human-harvested individuals from shell middens at seven localities, measured seven morphological variables, and classified the specimens as either adult or juvenile. We randomly selected 64 of these shells for rapid AMS radiocarbon dating in order to establish three geochronological bins: Lucayan (Pre-European invasion, 1492 CE), Modern (∼102 y), and Global (∼101 y). The proportion of juveniles harvested increased significantly from 47% (Lucayan) to 61% (Modern) to 68% (Global) suggesting increasing pressure on the fishery through time. Patterns in body size and morphology diverge between adults and juveniles and are likely the result of an increase in the proportion of harvested juveniles, the selection of smaller juveniles through time, and possibly changes in fishing methods. This size selective predation did not result in the suppression of adult body size as found in other studies. Geohistorical data, such as these, are vital for providing long term ecological context for addressing anthropogenic ecological degradation and are central to the conservation paleobiology approach. 
    more » « less
  5. Abstract In this essay, we explore the idea that slow social change may cause degradation of the open access equilibrium in recreational fisheries. An existing bioeconomic model illustrates how three social quantities in the recreational fisheries social–ecological system—the marginal cost of fishing effort, catchability, and the relative importance of catch and effort to angler utility—influence equilibrium fish abundance. We speculate that slow directional changes in all three of these quantities may be common, driving gradual declines in abundance that may be difficult to detect. We present limited evidence in support of this speculation, highlight the need for further empirical work, and discuss the implications of slow social change for resilient management of recreational fisheries in a changing world. 
    more » « less