skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 10, 2026

Title: Which Viewpoint Shows it Best? Language for Weakly Supervising View Selection in Multi-view Instructional Videos
Given a multi-view video, which viewpoint is most informative for a human observer? Existing methods rely on heuristics or expensive "best-view" supervision to answer this question, limiting their applicability. We propose a weakly supervised approach that leverages language accompanying an instructional multi-view video as a means to recover its most informative viewpoint(s). Our key hypothesis is that the more accurately an individual view can predict a view-agnostic text summary, the more informative it is. To put this into action, we propose LangView, a framework that uses the relative accuracy of view-dependent caption predictions as a proxy for best view pseudo-labels. Then, those pseudo-labels are used to train a view selector, together with an auxiliary camera pose predictor that enhances view-sensitivity. During inference, our model takes as input only a multi-view video--no language or camera poses--and returns the best viewpoint to watch at each timestep. On two challenging datasets comprised of diverse multi-camera setups and how-to activities, our model consistently outperforms state-of-the-art baselines, both with quantitative metrics and human evaluation.  more » « less
Award ID(s):
2505865
PAR ID:
10631525
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
https://doi.org/10.48550/arXiv.2411.08753
Date Published:
ISSN:
2411.08753
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce SWITCH-A-VIEW, a model that learns to automatically select the viewpoint to display at each timepoint when creating a how-to video. The key insight of our approach is how to train such a model from unlabeled -- but human-edited -- video samples. We pose a pretext task that pseudo-labels segments in the training videos for their primary viewpoint (egocentric or exocentric), and then discovers the patterns between the visual and spoken content in a how-to video on the one hand and its view-switch moments on the other hand. Armed with this predictor, our model can be applied to new multi-view video settings for orchestrating which viewpoint should be displayed when, even when such settings come with limited labels. We demonstrate our idea on a variety of real-world videos from HowTo100M and Ego-Exo4D, and rigorously validate its advantages. 
    more » « less
  2. Timely detection of horse pain is important for equine welfare. Horses express pain through their facial and body behavior, but may hide signs of pain from unfamiliar human observers. In addition, collecting visual data with detailed annotation of horse behavior and pain state is both cumbersome and not scalable. Consequently, a pragmatic equine pain classification system would use video of the unobserved horse and weak labels. This paper proposes such a method for equine pain classification by using multi-view surveillance video footage of unobserved horses with induced orthopaedic pain, with temporally sparse video level pain labels. To ensure that pain is learned from horse body language alone, we first train a self-supervised generative model to disentangle horse pose from its appearance and background before using the disentangled horse pose latent representation for pain classification. To make best use of the pain labels, we develop a novel loss that formulates pain classification as a multi-instance learning problem. Our method achieves pain classification accuracy better than human expert performance with 60% accuracy. The learned latent horse pose representation is shown to be viewpoint covariant, and disentangled from horse appearance. Qualitative analysis of pain classified segments shows correspondence between the pain symptoms identified by our model, and equine pain scales used in veterinary practice. 
    more » « less
  3. Egocentric and exocentric perspectives of human action differ significantly, yet overcoming this extreme viewpoint gap is critical in augmented reality and robotics. We propose VIEWPOINTROSETTA, an approach that unlocks large-scale unpaired ego and exo video data to learn clip-level viewpoint-invariant video representations. Our framework introduces (1) a diffusion-based Rosetta Stone Translator (RST), which, leveraging a moderate amount of synchronized multi-view videos, serves as a translator in feature space to decipher the alignment between unpaired ego and exo data, and (2) a dual encoder that aligns unpaired data representations through contrastive learning with RST-based synthetic feature augmentation and soft alignment. To evaluate the learned features in a standardized setting, we construct a new cross-view benchmark using Ego-Exo4D, covering cross-view retrieval, action recognition, and skill assessment tasks. Our framework demonstrates superior cross-view understanding compared to previous view-invariant learning and ego video representation learning approaches, and opens the door to bringing vast amounts of traditional third-person video to bear on the more nascent first-person setting. 
    more » « less
  4. Multi-camera systems are indispensable in movies, TV shows, and other media. Selecting the appropriate camera at every timestamp has a decisive impact on production quality and audience preferences. Learning-based view recommendation frameworks can assist professionals in decision-making. However, they often struggle outside of their training domains. The scarcity of labeled multi-camera view recommendation datasets exacerbates the issue. Based on the insight that many videos are edited from the original multi-camera videos, we propose transforming regular videos into pseudo-labeled multi-camera view recommendation datasets. Promisingly, by training the model on pseudo-labeled datasets stemming from videos in the target domain, we achieve a 68% relative improvement in the model’s accuracy in the target domain and bridge the accuracy gap between in-domain and never-before-seen domains. 
    more » « less
  5. S. Koyejo; S. Mohamed; A. Agarwal; D. Belgrave; K. Cho; A. Oh (Ed.)
    Labeling articulated objects in unconstrained settings has a wide variety of applications including entertainment, neuroscience, psychology, ethology, and many fields of medicine. Large offline labeled datasets do not exist for all but the most common articulated object categories (e.g., humans). Hand labeling these landmarks within a video sequence is a laborious task. Learned landmark detectors can help, but can be error-prone when trained from only a few examples. Multi-camera systems that train fine-grained detectors have shown significant promise in detecting such errors, allowing for self-supervised solutions that only need a small percentage of the video sequence to be hand-labeled. The approach, however, is based on calibrated cameras and rigid geometry, making it expensive, difficult to manage, and impractical in real-world scenarios. In this paper, we address these bottlenecks by combining a non-rigid 3D neural prior with deep flow to obtain high-fidelity landmark estimates from videos with only two or three uncalibrated, handheld cameras. With just a few annotations (representing 1−2 % of the frames), we are able to produce 2D results comparable to state-of-the-art fully supervised methods, along with 3D reconstructions that are impossible with other existing approaches. Our Multi-view Bootstrapping in the Wild (MBW) approach demonstrates impressive results on standard human datasets, as well as tigers, cheetahs, fish, colobus monkeys, chimpanzees, and flamingos from videos captured casually in a zoo. We release the codebase for MBW as well as this challenging zoo dataset consisting of image frames of tail-end distribution categories with their corresponding 2D and 3D labels generated from minimal human intervention. 
    more » « less