We identify a new kind of physically realizable exceptional point (EP) corresponding to degenerate coherent perfect absorption, in which two purely incoming solutions of the wave operator for electromagnetic or acoustic waves coalesce to a single state. Such non-Hermitian degeneracies can occur at a real-valued frequency without any associated noise or nonlinearity, in contrast to EPs in lasers. The absorption line shape for the eigenchannel near the EP is quartic in frequency around its maximum in any dimension. In general, for the parameters at which an operator EP occurs, the associated scattering matrix does not have an EP. However, in one dimension, when the S matrix does have a perfectly absorbing EP, it takes on a universal one-parameter form with degenerate values for all scattering coefficients. For absorbing disk resonators, these EPs give rise to chiral absorption: perfect absorption for only one sense of rotation of the input wave.
more »
« less
This content will become publicly available on November 1, 2026
In-plane linear stress waves in layered media: I. Non-Hermitian degeneracies and modal chirality
We study the band structure and scattering of in-plane coupled longitudinal and shear stress waves in linear layered media and observe that exceptional points (EP) appear for elastic (lossless) media, when parameterized with real-valued frequency and tangential wave vector component. The occurrence of these EP pairs is not limited to the original stop bands. They could also appear in all mode pass bands, leading to the formation of new stop bands. The scattered energy near these locations is studied along with the associated polarization patterns. The broken phase symmetry is observed inside the frequency bands book-ended by these EP pairs. This is especially manifested by the chirality of the trajectory of the particle velocity, which gets selected by a ‘‘direction’’ of the wave, e.g. the imaginary part of normal component of the wave vector, or the energy flux direction just outside the band. Additionally, EP pairs also appear in the spectrum of the (modified) scattering matrix when mechanical gain is theoretically included to balance the loss in a parity-time symmetric finite structure. These EP pairs lead to amplification of transmission to above 1 and single-sided reflectivity, both phenomena associated with broken phase symmetry, with intriguing potential applications.
more »
« less
- Award ID(s):
- 2219087
- PAR ID:
- 10631653
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Wave Motion
- Volume:
- 139
- Issue:
- C
- ISSN:
- 0165-2125
- Page Range / eLocation ID:
- 103610
- Subject(s) / Keyword(s):
- Mixed mode stress waves Transfer matrix method Elastic and viscoelastic layered media Exceptional points Chiral polarization
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We introduce cascaded parity-time (PT)-symmetric artificial sheets (e.g. metasurfaces or frequency selective surfaces) that may exhibit multiple higher-order laser-absorber modes and bidirectional reflectionless transmission resonances within the PT-broken phase, as well as a unidirectional reflectionless transmission resonance associated with the exceptional point (EP). We derive the explicit expressions of the gain–loss parameter required for obtaining these modes and their intriguing physical properties. By exploiting the cascaded PT structures, the gain–loss threshold for the self-dual laser-absorber operation can be remarkably lowered, while the EP remains unaltered. We further study interferometric sensing based on such a multimodal laser-absorber and demonstrate that its sensitivity may be exceptionally high and proportional to the number of metasurfaces along the light propagation direction.more » « less
-
Chirality-selective vibrational sum frequency generation (chiral SFG) spectroscopy has emerged as a powerful technique for the study of biomolecular hydration water due to its sensitivity to the induced chirality of the first hydration shell. Thus far, water O–H vibrational bands in phase-resolved heterodyne chiral SFG spectra have been fit using one Lorentzian function per vibrational band, and the resulting fit has been used to infer the underlying frequency distribution. Here, we show that this approach may not correctly reveal the structure and dynamics of hydration water. Our analysis illustrates that the chiral SFG responses of symmetric and asymmetric O–H stretch modes of water have opposite phase and equal magnitude and are separated in energy by intramolecular vibrational coupling and a heterogeneous environment. The sum of the symmetric and asymmetric responses implies that an O–H stretch in a heterodyne chiral SFG spectrum should appear as two peaks with opposite phase and equal amplitude. Using pairs of Lorentzian functions to fit water O–H stretch vibrational bands, we improve spectral fitting of previously acquired experimental spectra of model β-sheet proteins and reduce the number of free parameters. The fitting allows us to estimate the vibrational frequency distribution and thus reveals the molecular interactions of water in hydration shells of biomolecules directly from chiral SFG spectra.more » « less
-
Traditional band theory of perfect crystalline solids often uses as input the structure deduced from diffraction experiments; when modeled by the minimal unit cell this often produces a spatially averaged model. The present study illustrates that this is not always a safe practice unless one examines if the intrinsic bonding mechanism is capable of benefiting from the formation of a distribution of lower symmetry local environments that differ from the macroscopically averaged structure. This can happen either due to positional, or due to magnetic symmetry breaking. By removing the constraint of a small crystallographic cell, the energy minimization in the density functional theory finds atomic and spin symmetry breaking, not evident in conventional diffraction experiments but being found by local probes such as atomic pair distribution function analysis. Here we report that large atomic and electronic anomalies in bulk tetragonal FeSe emerge from the existence of distributions of local positional and magnetic moment motifs. The found symmetry broken motifs obtained by minimization of the internal energy represent what chemical bonding in tetragonal phase prefers as an intrinsic energy lowering (stabilizing) static distortions. This explains observations of band renormalization, predicts orbital order and enhanced nematicity, and provides unprecedented close agreement with spectral function measured by photoemission and local atomic environment revealed by pair distribution function. While the symmetry-restricted strong correlation approach has been argued previously to be the exclusive theory needed for describing the main peculiarities of FeSe, we show here that the symmetry-broken mean-field approach addresses numerous aspects of the problem, provides intuitive insight into the electronic structure, and opens the door for large-scale mean-field calculations for similar d-electron quantum materials.more » « less
-
We study Andreev bound states in the presence of a magnetic moment in a ferromagnetic topological insulator in superconductor/magnetic topological insulator/superconductor Josephson junctions. We analytically find zero energy states for out-of-plane and in-plane directions of the magnetic moment. In the case of the out-of-plane magnetic moment, the energy is independent of the scattering angle. If both magnetic and nonmagnetic scattering mechanisms are considered, the zero energy state requires the scattering angle to the electrode to be zero as in the case of Majorana fermions. In the presence of an in-plane magnetic moment, the energy band always exhibits a nonvanishing gap if the magnetic moment has a nonzero component, i.e., there are no zero energy states. Here we assume that the electrons tunnel in the direction. If the magnetic moment is aligned with the tunneling direction, the zero energy states always exist and are independent of the scattering angle. Contrary to the Majorana fermion case, the phase shift between two superconductor electrodes is not. This phase difference depends on the system parameters such as the Fermi velocity, the barrier potential magnitude, the exchange coupling between localized and delocalized electrons, and the component of the magnetic moment. We find an anomalous Josepheson current when the magnetic moment has a component in the direction, where the current is nonzero despite. This is due to the violation of time reversal and chiral symmetries in the Josepheson junction. This leads to the observation of the Josephson Diode effect as well. For large scattering magnitudes, we find that the transmission coefficient approaches one at larger barrier magnitudes. This is the main reason why in superconductor/magnetic topological insulator/superconductor Josephson junctions critical current is much higher than in superconductor/normal metal/superconductor junctions. This effect is similar in origin to Klein Tunneling for relativistic Dirac electrons. In the case of nonmagnetic and out-of-plane magnetic scatterings, the current vanishes when the barrier amplitudes are approximately equal and large. This effect cannot be explained by the relativistic nature of the Dirac equation and is specific to the model. We also study temperature dependencies for in- and out-of-plane magnetic moments. We find that current at high temperatures is significantly smaller than at low temperatures. The current approaches a constant value at low temperatures, at approximately. This value depends on the other system parameters. The existence of new zero energy states in magnetic topological insulators in superconductor/magnetic topological insulator/superconductor Josephson junctions opens new opportunities in quantum computing because of the presence of the additional symmetry with respect to the scattering angle.more » « less
An official website of the United States government
