skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 30, 2026

Title: Integrating cancer biology into course-based undergraduate research: A structured four-year curriculum for STEM students
Course-based undergraduate research experiences (CUREs) are a proven pedagogical approach to enhance undergraduate science process skills, knowledge, and competency outcomes by implementing a course-based faculty-mentored undergraduate research plan. CUREs are budget-friendly teaching and training practices that address the shortage of apprenticeship-style laboratory opportunities resulting from resource constraints. Effective CUREs implementations enable every science, technology, engineering, and math (STEM) major in the course, department, unit, or school to engage in real-world research activities, as CUREs integrate seamlessly into required lecture and laboratory courses within the curriculum. All CUREs encompass opportunities for undergraduates to participate in discovery-based, collaborative, iterative research projects that are important to the scientific community and society. A greater understanding of cancer development and cancer progression remains a significant challenge for society, given the number of cancer-related deaths worldwide each year. Additionally, given the diverse types of cancers that affect men and women, as well as the potential anti-tumor proliferation strategies yet to be discovered, an exploration in cancer biology presents a unique opportunity for undergraduates to produce novel findings that may lead to publications contributing to the field. This article outlines a technique for faculty to facilitate the execution of a cancer biology CUREs project that involves all student classifications. The extent to which participation in CUREs enhances undergraduate career readiness factors warrants further investigation.  more » « less
Award ID(s):
2306512
PAR ID:
10631748
Author(s) / Creator(s):
Date Published:
Journal Name:
International journal of science and research
Volume:
14
Issue:
7
ISSN:
2319-7064
Page Range / eLocation ID:
1650-1653
Subject(s) / Keyword(s):
undergraduate research cancer biology STEM education career readiness pedagogy
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Course‐based undergraduate research experiences (CUREs) provide students with valuable opportunities to engage in research in a classroom setting, expanding access to research opportunities for undergraduates, fostering inclusive research and learning environments, and bridging the gap between the research and education communities. While scientific practices, integral to the scientific discovery process, have been widely implemented in CUREs, there have been relatively few reports emphasizing the incorporation of core biology concepts into CURE curricula. In this study, we present a CURE that integrates core biology concepts, including genetic information flow, phenotype–genotype relationships, mutations and mutants, and structure–function relationships, within the context of mutant screening and gene loci identification. The design of this laboratory course aligns with key CURE criteria, as demonstrated by data collected through the laboratory course assessment survey (LCAS). The survey of undergraduate research experiences (SURE) demonstrates students' learning gains in both course‐directed skills and transferrable skills following their participation in the CURE. Additionally, concept survey data reflect students' self‐perceived understanding of the aforementioned core biological concepts. Given that genetic mutant screens are central to the study of gene function in biology, we anticipate that this CURE holds potential value for educators and researchers who are interested in designing and implementing a mutant screen CURE in their classrooms. This can be accomplished through independent research or by establishing partnerships between different units or institutions. 
    more » « less
  2. Undergraduate science students who volunteer within a research laboratory group, or participate in funded research opportunities, in general are those who have the opportunity to engage in authentic research. In this article, we report the findings from two different iterations of a semester-long collaboration between a biology faculty member and a science education faculty member at a major research institution in the Southeastern United States. Specifically, the faculty members designed an ecology laboratory course for upper-level undergraduate students (primarily biology majors) where they would engage in an original and highly authentic ecological research project. The goal of this course was to have students explicitly learn about the nature of science (NOS), and authentic scientific practices such as inquiry and experimentation in the context of their own research. In the second year of the course, the global COVID-19 pandemic forced us to modify our approach to accomplish the same goals, but now in a remote and online format. Using questionnaires, concept inventories, and semi-structured interviews, the impact of the course on students’ understandings of NOS, inquiry, and experimentation, in addition to their perspectives on the experience within the course compared to prior laboratory coursework, was investigated. We found that students showed modest gains in each of the aforementioned desirable outcomes. These gains were generally comparable in both face-to-face and remote course settings. Additionally, students shared with us their preference for authentic laboratory work as compared with the typical laboratory work with its given research question and step-by-step instructions. Our research demonstrates what is possible in both face-to-face and remote undergraduate laboratory courses in biology and the positive impact that was observed in our students. We hope it serves as a model for other scientists and science educators as they collaborate to design authentic research-based coursework for undergraduate biology students. 
    more » « less
  3. Decades of evidence support the premise that undergraduate research experiences are valuable endeavors for science students; however, a lack of knowledge about research and how to get involved can preclude equitable participation. We developed two in-class workshops to teach introductory biology students about undergraduate research experiences. In the first workshop, students are introduced to various types of undergraduate research, including faculty-mentored research, Course Based Undergraduate Research Experiences (CUREs), summer research experiences and research-related jobs and internships. Students hear first-hand accounts about research from undergraduates actively performing research and learn about the benefits and challenges associated with participating. In the second workshop, students learn how to effectively identify and secure research opportunities and engage in an exercise that teaches them how to write a professional email to potential research advisors. Students also work together to develop strategies for building resilience if faced with rejection from a faculty member or internship/job opportunity. The workshops utilize student speakers, think-pair-share activities, and class discussions to engage and inform students. By the end of the workshops, all students are familiar with undergraduate research and have the knowledge and skills needed to identify and secure a research opportunity. The workshops were designed for introductory biology students but can be adapted for students in related majors or at different stages of the academic journey. 
    more » « less
  4. Undergraduate instructional biology laboratories are typically taught within two paradigms. Some labs focus on protocols and techniques delivered in “cookbook” format with defined experimental outcomes. There is increasing momentum to alternatively employ student-driven, open-ended, and discovery-based strategies, oftenviacourse-based undergraduate research experiences (CUREs) using crowd-sourcing initiatives. A fraction of students also participate in funded research in faculty research labs, where they have opportunities to work on projects designed to expand the frontiers of human knowledge. These experiences are widely recognized as valuable but are not scalable, as most institutions have many more undergraduates than research lab positions. We sought to address this gap through our department’s curriculum by creating an opportunity for students to participate in the real-world research process within a laboratory course. We conceived, developed, and delivered an authentic, guided research experience to students in an upper-level molecular biology laboratory course. We refer to this model as a “research program-linked CURE.” The research questions come directly from a faculty member’s research lab and evolve along with that research program. Students study post-transcriptional regulation in mycobacteria. We use current molecular biology methodologies to test hypotheses like “UTRs affect RNA and protein expression levels,” “there is functional redundancy among RNA helicases,” and “carbon starvation alters mRNA 5′ end chemistries.” We conducted standard assessments and developed a customized “Skills and Concepts Inventory” survey to gauge how well the course met our student learning outcomes. We report the results of our assessments and describe challenges addressed during development and execution of the course, including organizing activities to fit within an instructional lab, balancing breadth with depth, and maintaining authenticity while giving students the experience of obtaining interpretable and novel results. Our data suggest student learning was enhanced through this truly authentic research approach. Further, students were able to perceive they were participants and contributors within an active research paradigm. Students reported increases in their self-identification as scientists, and a positive impact on their career trajectories. An additional benefit was reciprocation back to the funded research laboratory, by funneling course alumni, results, materials, and protocols. 
    more » « less
  5. Abstract Course‐based undergraduate research experiences (CUREs) can provide undergraduate students access to research opportunities when student and faculty resources are limited. In addition to expanding research opportunities, CUREs may also be explored as a pedagogical tool for improving student learning of course content and laboratory skills, as well as improving meta‐cognitive features such as confidence. We examined how a 6‐week CURE in an upper‐level undergraduate biochemistry lab affected student gains in content knowledge and confidence in scientific abilities, compared to a non‐CURE section of the same course. We find that gains in content knowledge were similar between CURE and non‐CURE sections, indicating the CURE does not negatively impact student learning. The CURE was associated with a statistically significant gain in student confidence, compared to non‐CURE group. These results show that even a relatively short CURE can be effective in improving student confidence at scientific research skills, in addition to expanding access to research. 
    more » « less