skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Genome-wide markers test the status of two putative species of North American bumble bees
Abstract Accurate species delimitation is critical to identifying the conservation status of species. Molecular species delimitation methods have revealed previously unrecognized cryptic species across the taxonomic spectrum. However, studies vary in the molecular markers selected, analytical approaches used, and taxon sampling, which sometimes results in conflicting conclusions. One example of such a conflict is seen in the species delimitation analyses of the western bumble bee,Bombus occidentalis. This species was once an abundant insect pollinator in western North America but has declined severely since the mid 1990s and is predicted to continue to diminish under even optimistic future climate scenarios. Complicating this conservation crisis, the species status ofB. occidentalishas varied over time, with most recent studies recognizing one or two species. Previous studies that used molecular methods to address this question focused on a Bayesian phylogeny of the mitochondrialcytochrome oxidase I(COI) gene. Phylogenetic studies that focus on a single gene are criticized for misrepresenting the evolutionary history of species because nuclear and mitochondrial genomes, and even some genes within them, may have different evolutionary patterns. We tested a two species hypothesis of theB. occidentaliscomplex using nuclear (ultraconserved elements) and mitochondrial (COI) markers to infer maximum likelihood and Bayesian phylogenies for the taxa. We present our results and conclusions from eight species delimitation methods. Based on the genomic, morphological and geographic differences between the taxa we find support for the two species hypothesis, withB. occidentalisandB. mckayias separate species. We discuss the strengths and limitations of each genetic dataset and delimitation method, make recommendations for best practices, and highlight opportunities for equitable knowledge and technology development for phylogenomics in conservation biology.  more » « less
Award ID(s):
2127744
PAR ID:
10631798
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Conservation Genetics
Volume:
26
Issue:
3
ISSN:
1566-0621
Page Range / eLocation ID:
429 to 448
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Foraminifera are a species-rich phylum of rhizarian protists that are highly abundant in many marine environments and play a major role in global carbon cycling. Species recognition in Foraminifera is mainly based on morphological characters and nuclear 18S ribosomal RNA barcoding. The 18S rRNA contains variable sequence regions that allow for the identification of most foraminiferal species. Still, some species show limited variability, while others contain high levels of intragenomic polymorphisms, thereby complicating species identification. The use of additional, easily obtainable molecular markers other than 18S rRNA will enable more detailed investigation of evolutionary history, population genetics and speciation in Foraminifera. Here we present the first mitochondrial cytochrome c oxidase subunit 1 (COI) gene sequences (“barcodes”) of Foraminifera. We applied shotgun sequencing to single foraminiferal specimens, assembled COI, and developed primers that allow amplification of COI in a wide range of foraminiferal species. We obtained COI sequences of 49 specimens from 17 species from the orders Rotaliida and Miliolida. Phylogenetic analysis showed that the COI tree is largely congruent with previously published 18S rRNA phylogenies. Furthermore, species delimitation with ASAP and ABGD algorithms showed that foraminiferal species can be identified based on COI barcodes. 
    more » « less
  2. The grassland leafhopper genus Aconurella is widespread in the Old World. Species of this genus are difficult to identify by traditional morphological characters but the morphology-based species classification in this genus has not previously been tested using molecular data. This study analysed DNA sequence data from two mitochondrial genes (COI, 16S) and one nuclear gene (ITS2) to infer the phylogenetic relationships and status of five previously recognized Aconurella species and compare the performance of different molecular species-delimitation methods using single and multiple loci. The analysis divided the included haplotypes into five well-supported subclades, most corresponding to existing morphology-based species concepts. However, different molecular species delimitation methods (jMOTU, ABGD, bPTP, GMYC and BPP) yielded somewhat different results, suggesting the presence of between 4 and 8 species, sometimes lumping the haplotypes of Aconurella diplachnis and Aconurella sibirica into a single species or recognizing multiple putative species within Aconurella prolixa. Considering the different results yielded by various methods employing single loci, the BPP method, which combines data from multiple loci, may be more reliable for delimiting species of Aconurella. Our results suggest that the morphological characters previously used to identify these species are reliable and adequately reflect boundaries between genetically distinct taxa. 
    more » « less
  3. Abstract Background The recognition and delineation of morphologically indistinguishable cryptic species can have broad implications for wildlife conservation, disease ecology and accurate estimates of biodiversity. Parasites are intriguing in the study of cryptic speciation because unique evolutionary pressures and diversifying factors are generated by ecological characteristics of host-parasite relationships, including host specificity. Bat flies (Diptera: Nycteribiidae and Streblidae) are obligate, hematophagous ectoparasites of bats that generally exhibit high host specificity. One rare exception is Penicillidia fulvida (Diptera: Nycteribiidae), an African bat fly found in association with many phylogenetically distant hosts. One explanation for P. fulvida ’s extreme polyxeny is that it may represent a complex of host-specific yet cryptic species, an increasingly common finding in molecular genetic studies of supposed generalist parasites. Methods A total of 65 P. fulvida specimens were collected at 14 localities across Kenya, from bat species representing six bat families. Mitochondrial cytochrome c oxidase subunit 1 ( COI ) and nuclear 28S ribosomal RNA (rRNA) sequences were obtained from 59 specimens and used to construct Bayesian and maximum likelihood phylogenies. Analysis of molecular variance was used to determine how genetic variation in P. fulvida was allocated among host taxa. Results The 28S rRNA sequences studied were invariant within P. fulvida . Some genetic structure was present in the COI sequence data, but this could be more parsimoniously explained by geography than host family. Conclusions Our results support the status of P. fulvida as a rare example of a single bat fly species with primary host associations spanning multiple bat families. Gene flow among P. fulvida utilizing different host species may be promoted by polyspecific roosting behavior in bats, and host preference may also be malleable based on bat assemblages occupying shared roosts. The proclivity of generalist parasites to switch hosts makes them more likely to vector or opportunistically transmit pathogens across host species boundaries. Consequently, the presence of polyxenous bat flies is an important consideration to disease ecology as bat flies become increasingly known to be associated with bat pathogens. Graphical Abstract 
    more » « less
  4. Subterranean estuaries are coastal ecosystems characterized by vertically stratified groundwater. The biota within these ecosystems is relatively understudied due to the inherent difficulty of accessing such extreme environments. The fauna inhabiting these ecosystems is considered vulnerable to extinction, and the presence of cryptic species has major implications for research and conservation efforts. Most species lack molecular data; however, the evaluation of genetic data for some taxa has revealed that undocumented species are common. This study employs molecular species delimitation methods and DNA barcoding through the analysis of publicly and newly generated sequences, including individuals from type localities and non-crustacean phyla; the latter are typically overlooked in biodiversity assessments of subterranean estuaries. We analysed 376 cytochrome c oxidase subunit I (COI) gene sequences and 154 16S rRNA gene sequences. The COI sequences represented 32% of previously described species and 50% of stygobiont species from the Yucatan Peninsula and Cozumel Island, while sequences of the 16S rRNA represented 14% of described species and 22% of stygobionts. Our results revealed cryptic genetic lineages and taxonomic misidentification of species. As several species from these ecosystems are recognized as endangered, the use of molecular approaches will improve biodiversity estimates and highlight overlooked cryptic lineages in need of evaluation of conservation status. 
    more » « less
  5. Abstract The genus Cyerce Bergh, 1870 has been a model for the study of defensive strategies, including chemical defences, ceratal autotomy, and crypsis or aposematism. Specialization on different algae and diverse genital armatures also make Cyerce a useful system for investigating speciation by host shift versus sexual selection. Here, we review the genus Cyerce in the Pacific and Indian oceans using molecular and morphological data. Two mitochondrial genes (COI and 16S) and one nuclear gene (H3) were sequenced from 154 specimens, including representatives from the Atlantic Ocean. Bayesian and maximum likelihood analyses were used to generate phylogenetic hypotheses. Species delimitation analyses performed on COI sequences recovered 17 genetically distinct Pacific and Indian Ocean species of Cyerce, 10 of which are new to science. Nine new species are named herein (C. takanoi sp. nov., C. katiae sp. nov., C. trowbridgeae sp. nov., C. blackburnae sp. nov., C. tutela sp. nov., C. basi sp. nov., C. whaapi sp. nov., C. goodheartae sp. nov., and C. liliuokalaniae sp. nov.). The 10th species, from the Red Sea, is not named due to the absence of internal anatomical data. These findings increase the species richness in Cyerce by about two-thirds, and demonstrate that even conspicuous taxa harbour considerable cryptic diversity. 
    more » « less