What are the units of text that we want to model? From bytes to multi-word expressions, text can be analyzed and generated at many granularities. Until recently, most natural language processing (NLP) models operated over words, treating those as discrete and atomic tokens, but starting with byte-pair encoding (BPE), subword-based approaches have become dominant in many areas, enabling small vocabularies while still allowing for fast inference. Is the end of the road character-level model or byte-level processing? In this survey, we connect several lines of work from the pre-neural and neural era, by showing how hybrid approaches of words and characters as well as subword-based approaches based on learned segmentation have been proposed and evaluated. We conclude that there is and likely will never be a silver bullet singular solution for all applications and that thinking seriously about tokenization remains important for many applications.
more »
« less
This content will become publicly available on July 11, 2026
Sampling from Your Language Model One Byte at a Time
Tokenization is used almost universally by modern language models, enabling efficient text representation using multi-byte or multi-character tokens. However, prior work has shown that tokenization can introduce distortion into the model's generations, an issue known as the Prompt Boundary Problem (PBP). For example, users are often advised not to end their prompts with a space because it prevents the model from including the space as part of the next token. While this heuristic is effective in English, the underlying PBP continues to affect languages such as Chinese as well as code generation, where tokens often do not line up with word and syntactic boundaries. In this work, we present an inference-time method to convert any autoregressive LM with a BPE tokenizer into a character-level or byte-level LM. Our method efficiently solves the PBP and is also able to unify the vocabularies of language models with different tokenizers, allowing one to ensemble LMs with different tokenizers at inference time or transfer the post-training from one model to another using proxy-tuning. We demonstrate in experiments that the ensemble and proxy-tuned models outperform their constituents on downstream evals. Code is available at this https URL .
more »
« less
- Award ID(s):
- 2505865
- PAR ID:
- 10631863
- Publisher / Repository:
- cs.CL
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The assumption across nearly all language model (LM) tokenization schemes is that tokens should be subwords, i.e., contained within word boundaries. While providing a seemingly reasonable inductive bias, is this common practice limiting the potential of modern LMs? Whitespace is not a reliable delimiter of meaning, as evidenced by multi-word expressions (e.g., "by the way"), crosslingual variation in the number of words needed to express a concept (e.g., "spacesuit helmet" in German is "raumanzughelm"), and languages that do not use whitespace at all (e.g., Chinese). To explore the potential of tokenization beyond subwords, we introduce a "superword" tokenizer, SuperBPE, which incorporates a simple pretokenization curriculum into the byte-pair encoding (BPE) algorithm to first learn subwords, then superwords that bridge whitespace. This brings dramatic improvements in encoding efficiency: when fixing the vocabulary size to 200k, SuperBPE encodes a fixed piece of text with up to 33% fewer tokens than BPE on average. In experiments, we pretrain 8B transformer LMs from scratch while fixing the model size, vocabulary size, and train compute, varying *only* the algorithm for learning the vocabulary. Our model trained with SuperBPE achieves an average +4.0% absolute improvement over the BPE baseline across 30 downstream tasks (including +8.2% on MMLU), while simultaneously requiring 27% less compute at inference time. In analysis, we find that SuperBPE results in segmentations of text that are more uniform in per-token difficulty. Qualitatively, this may be because SuperBPE tokens often capture common multi-word expressions that function semantically as a single unit. SuperBPE is a straightforward, local modification to tokenization that improves both encoding efficiency and downstream performance, yielding better language models overall.more » « less
-
As a cornerstone in language modeling, tokenization involves segmenting text inputs into pre-defined atomic units. Conventional statistical tokenizers often disrupt constituent boundaries within words, thereby corrupting semantic information. To address this drawback, we introduce morphological structure guidance to tokenization and propose a deep model to induce character-level structures of words. Specifically, the deep model jointly encodes internal structures and representations of words with a mechanism named to ensure the indecomposability of morphemes. By training the model with self-supervised objectives, our method is capable of inducing character-level structures that align with morphological rules without annotated training data. Based on the induced structures, our algorithm tokenizes words through vocabulary matching in a top-down manner. Empirical results indicate that the proposed method effectively retains complete morphemes and outperforms widely adopted methods such as BPE and WordPiece on both morphological segmentation tasks and language modeling tasks.more » « less
-
Understanding genomic sequences through the lens of language modeling has the potential to revolutionize biological research, yet challenges in tokenization, model architecture, and adaptation to diverse genomic contexts remain. In this study, we investigated key innovations in DNA sequence modeling, treating DNA as a language and applying language models to genomic data. We gathered two diverse pretraining datasets: one consisting of 19,551 reference genomes, including over 18,000 prokaryotic genomes (115B nucleotides), and another more balanced dataset with 1,354 genomes, including 1,166 prokaryotic and 188 eukaryotic reference genomes (180B nucleotides). We trained five byte-pair encoding tokenizers and pretrained 52 DNA language models, systematically comparing different architectures, hyperparameters, and classification heads. We introduceseqLens, a family of models based on disentangled attention with relative positional encoding, which outperforms state-of-the-art models in 13 of 19 benchmarking phenotypic predictions. We further explore continual pretraining, domain adaptation, and parameter-efficient fine-tuning methods to assess trade-offs between computational efficiency and accuracy. Our findings demonstrate that relevant pretraining data significantly boosts performance, alternative pooling techniques enhance classification, and larger tokenizers negatively impact generalization. These insights provide a foundation for optimizing DNA language models and improving genome annotations.more » « less
-
The pretraining data of today's strongest language models is opaque; in particular, little is known about the proportions of various domains or languages represented. In this work, we tackle a task which we call data mixture inference, which aims to uncover the distributional make-up of training data. We introduce a novel attack based on a previously overlooked source of information: byte-pair encoding (BPE) tokenizers, used by the vast majority of modern language models. Our key insight is that the ordered list of merge rules learned by a BPE tokenizer naturally reveals information about the token frequencies in its training data. Given a tokenizer's merge list along with example data for each category of interest, we formulate a linear program that solves for the proportion of each category in the tokenizer's training set. In controlled experiments, we show that our attack recovers mixture ratios with high precision for tokenizers trained on known mixtures of natural languages, programming languages, and data sources. We then apply our approach to off-the-shelf tokenizers released with recent LMs. We confirm much publicly disclosed information about these models, and also make several new inferences: GPT-4o and Mistral NeMo's tokenizers are much more multilingual than their predecessors, training on 39% and 47% non-English language data, respectively; Llama 3 extends GPT-3.5's tokenizer primarily for multilingual (48%) use; GPT-3.5's and Claude's tokenizers are trained on predominantly code (~60%). We hope our work sheds light on current design practices for pretraining data, and inspires continued research into data mixture inference for LMs.more » « less
An official website of the United States government
