— In this paper, we present CaveSeg - the first visual learning pipeline for semantic segmentation and scene parsing for AUV navigation inside underwater caves. We address the problem of scarce annotated training data by preparing a comprehensive dataset for semantic segmentation of underwater cave scenes. It contains pixel annotations for important navigation markers (e.g. caveline, arrows), obstacles (e.g. ground plain and overhead layers), scuba divers, and open areas for servoing. Through comprehensive benchmark analyses on cave systems in USA, Mexico, and Spain locations, we demonstrate that robust deep visual models can be developed based on CaveSeg for fast semantic scene parsing of underwater cave environments. In particular, we formulate a novel transformer-based model that is computationally light and offers near real-time execution in addition to achieving state-of-the-art performance. Finally, we explore the design choices and implications of semantic segmentation for visual servoing by AUVs inside underwater caves. The proposed model and benchmark dataset open up promising opportunities for future research in autonomous underwater cave exploration and mapping.
more »
« less
Multimodal Contextualized Semantic Parsing from Speech
his paper introduces Semantic Parsing in Contextual Environments (SPICE), a task aimed at improving artificial agents’ contextual awareness by integrating multimodal inputs with prior contexts. Unlike traditional semantic parsing, SPICE provides a structured and interpretable framework for dynamically updating an agent’s knowledge with new information, reflecting the complexity of human communication. To support this task, the authors develop the VG-SPICE dataset, which challenges models to construct visual scene graphs from spoken conversational exchanges, emphasizing the integration of speech and visual data. They also present the Audio-Vision Dialogue Scene Parser (AViD-SP), a model specifically designed for VG-SPICE. Both the dataset and model are released publicly, with the goal of advancing multimodal information processing and integration.
more »
« less
- Award ID(s):
- 2505865
- PAR ID:
- 10631956
- Publisher / Repository:
- https://doi.org/10.48550/arXiv.2406.06438
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Scene graph generation refers to the task of automatically mapping an image into a semantic structural graph, which requires correctly labeling each extracted object and their interaction relationships. Despite the recent success in object detection using deep learning techniques, inferring complex contextual relationships and structured graph representations from visual data remains a challenging topic. In this study, we propose a novel Attentive Relational Network that consists of two key modules with an object detection backbone to approach this problem. The first module is a semantic transformation module utilized to capture semantic embedded relation features, by translating visual features and linguistic features into a common semantic space. The other module is a graph self-attention module introduced to embed a joint graph representation through assigning various importance weights to neighboring nodes. Finally, accurate scene graphs are produced by the relation inference module to recognize all entities and the corresponding relations. We evaluate our proposed method on the widely-adopted Visual Genome dataset, and the results demonstrate the effectiveness and superiority of our model.more » « less
-
Abstract Scene memory has known spatial biases. Boundary extension is a well-known bias whereby observers remember visual information beyond an image’s boundaries. While recent studies demonstrate that boundary contraction also reliably occurs based on intrinsic image properties, the specific properties that drive the effect are unknown. This study assesses the extent to which scene memory might have a fixed capacity for information. We assessed both visual and semantic information in a scene database using techniques from image processing and natural language processing, respectively. We then assessed how both types of information predicted memory errors for scene boundaries using a standard rapid serial visual presentation (RSVP) forced error paradigm. A linear regression model indicated that memories for scene boundaries were significantly predicted by semantic, but not visual, information and that this effect persisted when scene depth was considered. Boundary extension was observed for images with low semantic information, and contraction was observed for images with high semantic information. This suggests a cognitive process that normalizes the amount of semantic information held in memory.more » « less
-
Humans often use natural language instructions to control and interact with robots for task execution. This poses a big challenge to robots that need to not only parse and understand human instructions but also realise semantic understanding of an unknown environment and its constituent elements. To address this challenge, this study presents a vision-language model (VLM)-driven approach to scene understanding of an unknown environment to enable robotic object manipulation. Given language instructions, a pretrained vision-language model built on open-sourced Llama2-chat (7B) as the language model backbone is adopted for image description and scene understanding, which translates visual information into text descriptions of the scene. Next, a zero-shot-based approach to fine-grained visual grounding and object detection is developed to extract and localise objects of interest from the scene task. Upon 3D reconstruction and pose estimate establishment of the object, a code-writing large language model (LLM) is adopted to generate high-level control codes and link language instructions with robot actions for downstream tasks. The performance of the developed approach is experimentally validated through table-top object manipulation by a robot.more » « less
-
Recurrent neural networks (RNNs) have shown the ability to improve scene parsing through capturing long-range dependencies among image units. In this paper, we propose dense RNNs for scene labeling by exploring various longrange semantic dependencies among image units. Different from existing RNN based approaches, our dense RNNs are able to capture richer contextual dependencies for each image unit by enabling immediate connections between each pair of image units, which significantly enhances their discriminative power. Besides, to select relevant dependencies and meanwhile to restrain irrelevant ones for each unit from dense connections, we introduce an attention model into dense RNNs. The attention model allows automatically assigning more importance to helpful dependencies while less weight to unconcerned dependencies. Integrating with convolutional neural networks (CNNs), we develop an end-to-end scene labeling system. Extensive experiments on three large-scale benchmarks demonstrate that the proposed approach can improve the baselines by large margins and outperform other state-of-the-art algorithms.more » « less
An official website of the United States government

