skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 26, 2026

Title: Alfvén Wave Mode Conversion in Neutron Star Magnetospheres: A Semianalytic Approach
Abstract We write down the force-free electrodynamics equations in dipole coordinates and solve for axisymmetric normal modes corresponding to Alfvénic perturbations in the magnetosphere of a neutron star. We show that a single Alfvén wave propagating on dipole field lines spontaneously sources a fast magnetosonic (fms) wave at the next order in the perturbation expansion, without needing three-wave interaction. The frequency of the sourced fms wave is twice the original Alfvén wave frequency, and the wave propagates spherically outward. The properties of the outgoing fms wave can be computed exactly using the usual devices of classical electrodynamics. We extend the calculation to the closed zone of a rotating neutron star magnetosphere, and show that the Alfvén wave also sources a spherical fms wave but at the same frequency as the primary Alfvén wave.  more » « less
Award ID(s):
2308111
PAR ID:
10632077
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
987
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
42
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Neutron stars have solid crusts threaded by strong magnetic fields. Perturbations in the crust can excite nonradial oscillations, which can in turn launch Alfvén waves into the magnetosphere. In the case of a compact binary close to merger involving at least one neutron star, this can happen through tidal interactions causing resonant excitations that shatter the neutron star crust. We present the first numerical study that elucidates the dynamics of Alfvén waves launched in a compact binary magnetosphere. We seed a magnetic field perturbation on the neutron star crust, which we then evolve in fully general-relativistic force-free electrodynamics using a GPU-based implementation. We show that Alfvén waves steepen nonlinearly before reaching the orbital light cylinder, form flares, and dissipate energy in a transient current sheet. Our results predict radio and X-ray precursor emission from this process. 
    more » « less
  2. Abstract Rapid shear motion of magnetar crust can launch Alfvén waves into the magnetosphere. The dissipation of the Alfvén waves has been theorized to power the X-ray bursts characteristic of magnetars. However, the process by which Alfvén waves convert their energy to X-rays is unclear. Recent work has suggested that energetic fast magnetosonic (fast) waves can be produced as a byproduct of Alfvén waves propagating on curved magnetic field lines; their subsequent dissipation may power X-ray bursts. In this work, we investigate the production of fast waves by performing axisymmetric force-free simulations of Alfvén waves propagating in a dipolar magnetosphere. For Alfvén wave trains that do not completely fill the flux tube confining them, we find a fast wave dominated by a low frequency component with a wavelength defined by the bouncing time of the Alfvén waves. In contrast, when the wave train is long enough to completely fill the flux tube, and the Alfvén waves overlap significantly, the energy is quickly converted into a fast wave with a higher frequency that corresponds to twice the Alfvén wave frequency. We investigate how the energy, duration, and wavelength of the initial Alfvén wave train affect the conversion efficiency to fast waves. For modestly energetic star quakes, we see that the fast waves that are produced will become nonlinear well within the magnetosphere, and we comment on the X-ray emission that one may expect from such events. 
    more » « less
  3. Abstract We examine coupling of fluctuations in the solar wind with electromagnetic ion cyclotron (EMIC) waves in the magnetosphere using an advanced full‐wave simulation code, Petra‐M. Dipole tilt dramatically affects the coupling process. While very little wave power can reach the inner magnetosphere without tilt effects, a tilted dipole field dramatically increases the efficiency of the coupling process. Solar wind fluctuations incident at high magnetic latitude effectively reaches the ground along the field line and mode‐convert to linearly polarized field‐aligned propagating waves at the Alfvén and IIH resonances. Therefore, solar wind compressions efficiently drive linearly polarized EMIC waves when the dipole angle is tilted toward or away from the Sun‐Earth direction. 
    more » « less
  4. Abstract The Earth's magnetosphere supports a variety of Magnetohydrodynamic (MHD) normal modes with Ultra Low Frequencies (ULF) including standing Alfvén waves and cavity/waveguide modes. Their amplitudes and frequencies depend in part on the properties of the magnetosphere (size of cavity, wave speed distribution). In this work, we use ∼13 years of Time History of Events and Macroscale Interactions during Substorms satellite magnetic field observations, combined with linearized MHD numerical simulations, to examine the properties of MHD normal modes in the regionL > 5 and for frequencies <80 mHz. We identify persistent normal mode structure in observed dawn sector power spectra with frequency‐dependent wave power peaks like those obtained from simulation ensemble averages, where the simulations assume different radial Alfvén speed profiles and magnetopause locations. We further show with both observations and simulations how frequency‐dependent wave power peaks atL > 5 depend on both the magnetopause location and the location of peaks in the radial Alfvén speed profile. Finally, we discuss how these results might be used to better model radiation belt electron dynamics related to ULF waves. 
    more » « less
  5. Abstract Disk-fed accretion onto neutron stars can power a wide range of astrophysical sources ranging from X-ray binaries, to accretion-powered millisecond pulsars, ultraluminous X-ray sources, and gamma-ray bursts. A crucial parameter controlling the gas–magnetosphere interaction is the strength of the stellar dipole. In addition, coherent X-ray pulsations in many neutron star systems indicate that the star's dipole moment is oblique relative to its rotation axis. Therefore, it is critical to systematically explore the 2D parameter space of the star's magnetic field strength and obliquity, which is what this work does, for the first time, in the framework of 3D general-relativistic magnetohydrodynamics. If the accretion disk carries its own vertical magnetic field, this introduces an additional factor: the relative polarity of the disk and stellar magnetic fields. We find that depending on the strength of the stellar dipole and the star–disk relative polarity, the neutron star's jet power can either increase or decrease with increasing obliquity. For weak dipole strength (equivalently, high accretion rate), the parallel polarity results in a positive correlation between jet power and obliquity, whereas the antiparallel orientation displays the opposite trend. For stronger dipoles, the relative-polarity effect disappears, and jet power always decreases with increasing obliquity. The influence of the relative polarity gradually disappears as obliquity increases. Highly oblique pulsars tend to have an increased magnetospheric radius, a lower mass accretion rate, and enter the propeller regime at lower magnetic moments than aligned stars. 
    more » « less