skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mo-substitution in V2O5 tunes the structure towards three-dimensional connectivity and improves Li-ion battery cycling
The development of alternative energy sources is crucial for reducing reliance on fossil fuels, particularly for mobile applications such as personal electronics and transportation. This necessitates the advancement of battery materials based on abundant and inexpensive constituent elements. To achieve this requires investigating materials in a broader compositional and structural design space. Early transition metal oxides, including the intercalation electrode α–V2O5, however, the performance of V2O5 is hindered by phase transformations during battery cycling that lead to capacity fade and short device lifetimes. This study investigates the modification of V2O5 through Mo substitution in a series of the form V2−xMoxO5 for x = 0.05, 0.1, 0.2, 0.4, 0.6, and 0.8. X-ray diffraction data reveal progressive structural changes with increasing Mo content, which in turn change the progression of phase transformations during the first discharge. The different product also results in different cycling profile shapes that indicate differences in the charge storage mechanism as a function of Mo content. As a result, samples with higher Mo-substitution, especially V1.2Mo0.8O5, have narrower hysteresis, higher capacity, and improved capacity retention. While there is a limited solubility of Mo in the V2O5structure, with secondary phases and defects at many compositions, we show that Mo substitution alters the cycling behavior of V2O5 to deep discharge, which can inform the design of intercalation materials for energy storage applications.  more » « less
Award ID(s):
2334240
PAR ID:
10632120
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Zenodo
Date Published:
Subject(s) / Keyword(s):
V2O5 Li-ion battery X-ray diffraction
Format(s):
Medium: X
Right(s):
Creative Commons Attribution 4.0 International
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The development of alternative energy sources is crucial for reducing reliance on fossil fuels, particularly for mobile applications such as personal electronics and transportation. This necessitates the advancement of battery materials based on abundant and inexpensive constituent elements. To achieve this requires investigating materials in a broader compositional and structural design space. Early transition metal oxides, including the intercalation electrode α V2O5, however, the performance of V2O5is hindered by phase transformations during battery cycling that lead to capacity fade and short device lifetimes. This study investigates the modification of V2O5through Mo substitution in a series of the form V 2 x MoxO5forx= 0.05, 0.1, 0.2, 0.4, 0.6, and 0.8. X-ray diffraction data reveal progressive structural changes with increasing Mo content, which in turn change the progression of phase transformations during the first discharge. The different product also results in different cycling profile shapes that indicate differences in the charge storage mechanism as a function of Mo content. As a result, samples with higher Mo-substitution, especially V1.2Mo0.8O5, have narrower hysteresis, higher capacity, and improved capacity retention. While there is a limited solubility of Mo in the V2O5structure, with secondary phases and defects at many compositions, we show that Mo substitution alters the cycling behavior of V2O5to deep discharge, which can inform the design of intercalation materials for energy storage applications. 
    more » « less
  2. Lithium metal and lithium-rich alloys are high-capacity anode materials that could boost the energy content of rechargeable batteries. However, their development has been hindered by rapid capacity decay during cycling, which is driven by the substantial structural, morphological, and volumetric transformations that these materials and their interfaces experience during charge and discharge. During these transformations, the interplay between chemical/structural changes and solid mechanics plays a defining role in determining electrochemical degradation. This Perspective discusses how chemistry and mechanics are interrelated in influencing the reaction mechanisms, stability, and performance of both lithium metal anodes and alloy anodes. Battery systems with liquid electrolytes and solid-state electrolytes are considered because of the distinct effects of chemo-mechanics in each system. Building on this knowledge, we present a discussion of emerging ideas to control and mitigate chemo-mechanical degradation in these materials to enable translation to commercial systems, which could lead to the development of high-energy batteries that are urgently needed to power our increasingly electrified world. 
    more » « less
  3. The growing interest in sodium-ion batteries (SIBs) is driven by scarcity and the rising costs of lithium, coupled with the urgent need for scalable and sustainable energy storage solutions. Among various cathode materials, layered transition metal oxides have emerged as promising candidates due to their structural similarity to lithium-ion battery (LIB) counterparts and their potential to deliver high energy density at reduced costs. However, significant challenges remain, including limited capacity at high charge/discharge rates and structural instability during extended cycling. Addressing these issues is critical for advancing SIB technology toward industrial applications, particularly for large-scale energy storage systems. This review provides a comprehensive analysis of layered sodium transition metal oxides, focusing on their structural properties, electrochemical performance, and degradation mechanisms. Special attention is given to the intrinsic and extrinsic factors contributing to their instability, such as structural phase transitions, and cationic/anionic redox behavior. Additionally, recent advancements in material design strategies, including doping, surface modifications, and composite formation, are discussed to highlight the progress toward enhancing the stability and performance of these materials. This work aims to bridge the knowledge gaps and inspire further innovations in the development of high-performance cathodes for sodium-ion batteries. 
    more » « less
  4. Abstract Lithium/fluorinated graphite (Li/CFx) primary batteries show great promise for applications in a wide range of energy storage systems due to their high energy density (>2100 Wh kg–1) and low self‐discharge rate (<0.5% per year at 25 °C). While the electrochemical performance of the CFxcathode is indeed promising, the discharge reaction mechanism is not thoroughly understood to date. In this article, a multiscale investigation of the CFxdischarge mechanism is performed using a novel cathode structure to minimize the carbon and fluorine additives for precise cathode characterizations. Titration gas chromatography, X‐ray diffraction, Raman spectroscopy, X‐ray photoelectron spectroscopy, scanning electron microscopy, cross‐sectional focused ion beam, high‐resolution transmission electron microscopy, and scanning transmission electron microscopy with electron energy loss spectroscopy are utilized to investigate this system. Results show no metallic lithium deposition or intercalation during the discharge reaction. Crystalline lithium fluoride particles uniformly distributed with <10 nm sizes into the CFxlayers, and carbon with lower sp2content similar to the hard‐carbon structure are the products during discharge. This work deepens the understanding of CFxas a high energy density cathode material and highlights the need for future investigations on primary battery materials to advance performance. 
    more » « less
  5. Despite their rapid emergence as the dominant paradigm for electrochemical energy storage, the full promise of lithium-ion batteries is yet to be fully realized, partly because of challenges in adequately resolving common degradation mechanisms. Positive electrodes of Li-ion batteries store ions in interstitial sites based on redox reactions throughout their interior volume. However, variations in the local concentration of inserted Li-ions and inhomogeneous intercalation-induced structural transformations beget substantial stress. Such stress can accumulate and ultimately engender substantial delamination and transgranular/intergranular fracture in typically brittle oxide materials upon continuous electrochemical cycling. This perspective highlights the coupling between electrochemistry, mechanics, and geometry spanning key electrochemical processes: surface reaction, solid-state diffusion, and phase nucleation/transformation in intercalating positive electrodes. In particular, we highlight recent findings on tunable material design parameters that can be used to modulate the kinetics and thermodynamics of intercalation phenomena, spanning the range from atomistic and crystallographic materials design principles (based on alloying, polymorphism, and pre-intercalation) to emergent mesoscale structuring of electrode architectures (through control of crystallite dimensions and geometry, curvature, and external strain). This framework enables intercalation chemistry design principles to be mapped to degradation phenomena based on consideration of mechanics coupling across decades of length scales. Scale-bridging characterization and modeling, along with materials design, holds promise for deciphering mechanistic understanding, modulating multiphysics couplings, and devising actionable strategies to substantially modify intercalation phase diagrams in a manner that unlocks greater useable capacity and enables alleviation of chemo-mechanical degradation mechanisms. 
    more » « less