ABSTRACT Biodiversity promotes ecosystem productivity and stability, positive impacts that often strengthen over time. But ongoing global changes such as rising atmospheric carbon dioxide (CO2) levels and anthropogenic nitrogen (N) deposition may modulate the impact of biodiversity on ecosystem productivity and stability over time. Using a quarter‐century grassland biodiversity‐global change experiment we show that diversity increasingly enhanced productivity over time irrespective of global change treatments. In contrast, the positive influence of diversity on ecosystem stability strengthened over time under ambient conditions but weakened to varying degrees under global change treatments, largely driven by a greater reduction in species asynchrony under global changes. Thus, over 25 years, CO2and N enrichment gradually eroded some of the positive effects of biodiversity on ecosystem stability. As elevated CO2, N eutrophication, and biodiversity loss increasingly co‐occur in grasslands globally, our results raise concerns about their potential joint detrimental effects on long‐term grassland stability.
more »
« less
Elevated CO2 and enriched nitrogen proportionally decrease species richness most at small spatial scales in a grassland experiment
Abstract Global changes such as nitrogen (N) enrichment and elevated carbon dioxide (CO2) are known to exacerbate biodiversity loss in grassland ecosystems. They do so by modifying processes whose strength may vary at different spatial scales. Yet, whether and how global changes impact plant diversity at different spatial scales remains elusive.We collected data on species presence and cover at a high resolution in the third decade of a long‐term temperate grassland biodiversity—global change experiment. Based on the data, we constructed species—area relationships across three spatial orders of magnitude (from 0.01 to 3.24 m2) and compared them for the different global change treatments.We found that N enrichment, both under ambient and elevated CO2levels, decreased species richness across almost all spatial scales, with proportional decreases being largest at the smallest spatial scales. Elevated CO2also reduced richness at both ambient and enriched N supply rates but did so proportionally across all spatial scales. Suppression of diversity was stronger at all scales for diversity indices that include relative abundances than for species richness. Taken together, these results suggest that CO2and N are re‐organizing this grassland system by increasingly favouring, at fine scales, a small subset of dominant species.Synthesis: Our results highlight the role of spatial scales in influencing biodiversity loss, especially when it is driven by anthropogenic resource changes that might influence species interactions differently across spatial scales.
more »
« less
- PAR ID:
- 10632252
- Publisher / Repository:
- British Ecological Society
- Date Published:
- Journal Name:
- Journal of Ecology
- ISSN:
- 0022-0477
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Improved understanding of bacterial community responses to multiple environmental filters over long time periods is a fundamental step to develop mechanistic explanations of plant–bacterial interactions as environmental change progresses.This is the first study to examine responses of grassland root‐associated bacterial communities to 15 years of experimental manipulations of plant species richness, functional group and factorial enrichment of atmospheric CO2(eCO2) and soil nitrogen (+N).Across the experiment, plant species richness was the strongest predictor of rhizobacterial community composition, followed by +N, with no observed effect of eCO2. Monocultures of C3and C4grasses and legumes all exhibited dissimilar rhizobacterial communities within and among those groups. Functional responses were also dependent on plant functional group, where N2‐fixation genes, NO3−‐reducing genes and P‐solubilizing predicted gene abundances increased under resource‐enriched conditions for grasses, but generally declined for legumes. In diverse plots with 16 plant species, the interaction of eCO2+N altered rhizobacterial composition, while +N increased the predicted abundance of nitrogenase‐encoding genes, and eCO2+N increased the predicted abundance of bacterial P‐solubilizing genes.Synthesis: Our findings suggest that rhizobacterial community structure and function will be affected by important global environmental change factors such as eCO2, but these responses are primarily contingent on plant species richness and the selective influence of different plant functional groups.more » « less
-
Abstract Plant functional groups (FGs) differ in their response to global changes, although species within those groups also vary in such responses. Both species and FG responses to global change are likely influenced by species interactions such as inter‐specific competition and facilitation, which are prevalent in species mixtures but not monocultures. As most studies focus on responses of plants growing in either monocultures or mixtures, but rarely both, it remains unclear how interspecific interactions in diverse ecological communities, especially among species in different FGs, modify FG responses to global changes. To address these issues, we leveraged data from a 16‐species, 24‐year perennial grassland experiment to examine plant FG biomass responses to atmospheric CO2, and N inputs at different planted diversity. FGs differed in their responses to N and CO2treatments in monocultures. Such differences were amplified in mixtures, where N enrichment strongly increased C3 grass success at ambient CO2and C4 grass success at elevated CO2. Legumes declined with N enrichment in mixtures at both CO2levels and increased with elevated CO2in the initial years of the experiment. Our results suggest that previous studies that considered responses to global changes in monocultures may underestimate biomass changes in diverse communities where interspecific interactions can amplify responses. Such effects of interspecific interactions on responses of FGs to global change may impact community composition over time and consequently influence ecosystem functions.more » « less
-
Abstract Human impacts have led to dramatic biodiversity change which can be highly scale‐dependent across space and time. A primary means to manage these changes is via passive (here, the removal of disturbance) or active (management interventions) ecological restoration. The recovery of biodiversity, following the removal of disturbance, is often incomplete relative to some kind of reference target. The magnitude of recovery of ecological systems following disturbance depends on the landscape matrix and many contingent factors. Inferences about recovery after disturbance and biodiversity change depend on the temporal and spatial scales at which biodiversity is measured.We measured the recovery of biodiversity and species composition over 33 years in 17 temperate grasslands abandoned after agriculture at different points in time, collectively forming a chronosequence since abandonment from 1 to 80 years. We compare these abandoned sites with known agricultural land‐use histories to never‐disturbed sites as relative benchmarks. We specifically measured aspects of diversity at the local plot‐scale (α‐scale, 0.5 m2) and site‐scale (γ‐scale, 10 m2), as well as the within‐site heterogeneity (β‐diversity) and among‐site variation in species composition (turnover and nestedness).At our α‐scale, sites recovering after agricultural abandonment only had 70% of the plant species richness (and ~30% of the evenness), compared to never‐ploughed sites. Within‐site β‐diversity recovered following agricultural abandonment to around 90% after 80 years. This effect, however, was not enough to lead to recovery at our γ‐scale. Richness in recovering sites was ~65% of that in remnant never‐ploughed sites. The presence of species characteristic of the never‐disturbed sites increased in the recovering sites through time. Forb and legume cover declines in years since abandonment, relative to graminoid cover across sites.Synthesis.We found that, during the 80 years after agricultural abandonment, old fields did not recover to the level of biodiversity in remnant never‐ploughed sites at any scale. β‐diversity recovered more than α‐scale or γ‐scale. Plant species composition recovered, but not completely, over time, and some species groups increased their cover more than others. Patterns of ecological recovery in degraded ecosystems across space and long time‐scales can inform targeted active restoration interventions and perhaps, lead to better outcomes.more » « less
-
Abstract Nutrient availability and grazing are known as main drivers of grassland plant diversity, and increased nutrient availability and long‐term cessation of grazing often decrease local‐scale plant diversity. Experimental tests of mechanisms determining plant diversity focus mainly on vascular plants (VP), whereas non‐vascular plants (NVP, here bryophytes) have been ignored. It is therefore not known how the current models based on VPs predict the rates of total (NVP + VP) losses in plant diversity.Here we used plant community data, including VPs and NVPs, from nine sites in Europe and North America and belonging to the Nutrient Network experiment, to test whether neglecting NVPs leads to biased estimates of plant diversity loss rates. The plant communities were subjected to factorial addition of nitrogen (N), phosphorus (P), potassium with micronutrients (K+μ), as well as a grazing exclusion combined with multi‐nutrient fertilization (NPK+μ) treatment.We found that nutrient additions reduced both NVP and VP species richness, but the effects on NVP species richness were on average stronger than on VPs: NVP species richness decreased 67%, while VP species richness decreased 28%, causing their combined richness to decrease 38% in response to multi‐nutrient (NPK+μ) fertilization. Thus, VP diversity alone underestimated total plant diversity loss by 10 percentage points.Although NVP and VP species diversities similarly declined in response to N and NPK+μfertilizations, the evenness of NVPs increased and that of VPs remained unchanged. NP, NPK+μfertilization and NPK+μfertilization combined with grazing exclusion, associated with decreasing light availability at ground level, led to the strongest loss of NVP species or probability of NVP presence. However, grazing did not generally mitigate the fertilization effects.Synthesis. In nine grassland sites in Europe and North America, nutrient addition caused a larger relative decline in non‐vascular plant (NVP) than vascular plant species richness. Hence, not accounting for NVPs can lead to underestimation of losses in plant diversity in response to continued nutrient pollution of grasslands.more » « less
An official website of the United States government

