skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 16, 2026

Title: Using Self-regulated Learning Theory to Inform the Design of Educational Recommender Systems for Introductory Programming
Many educational recommender systems (EdRecSys) rely on commercial recommendation strategies that emphasize content relevance while neglecting learners’ views on recommendation effectiveness. To address this, we conducted a co-design study with computer science students in an introductory programming course to explore their vision of an ideal EdRecSys. The subjects shared preferences and concerns related to three areas: recommendation approaches, transparency, and control. We used Zimmerman’s model of self-regulated learning to contextualize their expectations within a broader educational framework. Findings offer actionable insights for designing learner-centered AIED systems that foster engagement, agency, and self-regulation.  more » « less
Award ID(s):
2418655 2426839 2426837
PAR ID:
10632296
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Proceedings of 26th International Conference on Artificial Intelligence in Education, AIED 2025, Part 4, Springer Nature Switzerland
Date Published:
Page Range / eLocation ID:
276 to 284
Subject(s) / Keyword(s):
Educational Recommender Systems Self-Regulated Learning User-Centered Design
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Agrawal, Garima (Ed.)
    Cybersecurity education is exceptionally challenging as it involves learning the complex attacks; tools and developing critical problem-solving skills to defend the systems. For a student or novice researcher in the cybersecurity domain, there is a need to design an adaptive learning strategy that can break complex tasks and concepts into simple representations. An AI-enabled automated cybersecurity education system can improve cognitive engagement and active learning. Knowledge graphs (KG) provide a visual representation in a graph that can reason and interpret from the underlying data, making them suitable for use in education and interactive learning. However, there are no publicly available datasets for the cybersecurity education domain to build such systems. The data is present as unstructured educational course material, Wiki pages, capture the flag (CTF) writeups, etc. Creating knowledge graphs from unstructured text is challenging without an ontology or annotated dataset. However, data annotation for cybersecurity needs domain experts. To address these gaps, we made three contributions in this paper. First, we propose an ontology for the cybersecurity education domain for students and novice learners. Second, we develop AISecKG, a triple dataset with cybersecurity-related entities and relations as defined by the ontology. This dataset can be used to construct knowledge graphs to teach cybersecurity and promote cognitive learning. It can also be used to build downstream applications like recommendation systems or self-learning question-answering systems for students. The dataset would also help identify malicious named entities and their probable impact. Third, using this dataset, we show a downstream application to extract custom-named entities from texts and educational material on cybersecurity. 
    more » « less
  2. Personalized learning and educational recommender systems are integral parts of modern online education systems. In this context, the problem of recommending the best learning material to students is a perfect example of sequential multi-objective recommendation. Learning material recommenders need to optimize for and balance between multiple goals, such as adapting to student ability, adjusting the learning material difficulty, increasing student knowledge, and serving student interest, at every step of the student learning sequence. However, the obscurity and incompatibility of these objectives pose additional challenges for learning material recommenders. To address these challenges, we propose Proximity-based Educational Recommendation (PEAR), a recommendation framework that suggests a ranked list of problems by approximating and balancing between problem difficulty and student ability. To achieve an accurate approximation of these objectives, PEAR can integrate with any state-of-the-art student and domain knowledge model. As an example of such student and domain knowledge model, we introduce Deep Q-matrix based Knowledge Tracing model (DQKT), and integrate PEAR with it. Rather than static recommendations, this framework dynamically suggests new problems at each step by tracking student knowledge level over time. We use an offline evaluation framework, Robust Evaluation Matrix (REM), to compare PEAR with various baseline recommendation policies under three different student simulators and demonstrate the effectiveness of our proposed model. We experiment with different student trajectory lengths and show that while PEAR can perform better than the baseline policies with fewer data, it is also robust with longer sequence lengths. 
    more » « less
  3. Recommendations for online educational systems generally differ from recommendations generated in other contexts (e.g. movies, e-commerce), given that students’ level of knowledge rather then their interests is key for suggesting the most appropriate content. Thus, the challenge of making recommendations more transparent is closely tied to how student skills are estimated and conveyed. In this paper, we present an approach based on Open Learner Model visualization as a first step for making the learning content recommendation process more transparent. A preliminary analysis of students who used the visualization for navigating the content of an introductory programming course showed that considerable time was spent exploring the explanatory interface, which could be linked to the significant likelihood of opening/attempting the recommended activities. 
    more » « less
  4. Many of the everyday decisions a user makes rely on the suggestions of online recommendation systems. These systems amass implicit (e.g., location, purchase history, browsing history) and explicit (e.g., reviews, ratings) feedback from multiple users, produce a general consensus, and provide suggestions based on that consensus. However, due to privacy concerns, users are uncomfortable with implicit data collection, thus requiring recommendation systems to be overly dependent on explicit feedback. Unfortunately, users do not frequently provide explicit feedback. This hampers the ability of recommendation systems to provide high-quality suggestions. We introduce Heimdall, the first privacy-respecting implicit preference collection framework that enables recommendation systems to extract user preferences from their activities in a privacy respect- ing manner. The key insight is to enable recommendation systems to run a collector on a user’s device and precisely control the information a collector transmits to the recommendation system back- end. Heimdall introduces immutable blobs as a mechanism to guarantee this property. We implemented Heimdall on the Android plat- form and wrote three example collectors to enhance recommendation systems with implicit feedback. Our performance results suggest that the overhead of immutable blobs is minimal, and a user study of 166 participants indicates that privacy concerns are significantly less when collectors record only specific information—a property that Heimdall enables. 
    more » « less
  5. null (Ed.)
    Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complex and user relations can be high-order. Hypergraph provides a natural way to model high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. Extensive experiments on multiple real-world datasets demonstrate the superiority of the proposed model over the current SOTA methods, and the ablation study verifies the effectiveness and rationale of the multi-channel setting and the self-supervised task. The implementation of our model is available via https://github.com/Coder-Yu/RecQ. 
    more » « less