Measurement uncertainty is an important topic in the undergraduate laboratory curriculum. Previous research on student thinking about experimental measurement uncertainty has focused primarily on introductory-level students’ procedural reasoning about data collection and interpretation. In this paper, we extended this prior work to study upper-level students’ thinking about sources of measurement uncertainty across experimental contexts, with a particular focus on classical and quantum mechanics contexts. We developed a survey to probe students’ thinking in the generic question “What comes to mind when you think about measurement uncertainty in [classical/quantum] mechanics?” as well as in a range of specific experimental scenarios and interpreted student responses through the lens of availability and accessibility of knowledge pieces. We found that limitations of the experimental setup were most accessible to students in classical mechanics while principles of the underlying physics theory were most accessible to students in quantum mechanics, even in a context in which this theory was not relevant. We recommend that future research probe which sources of uncertainty experts believe are relevant in which contexts and how instruction in both classical and quantum contexts can help students draw on appropriate sources of uncertainty in classical and quantum experiments.
more »
« less
Work in Progress: Experiences of Uncertainty in Sociotechnical Small-Group Undergraduate Discussions
In this work-in-progress qualitative case study, we explore how first- and second year undergraduate students experience uncertainty when doing expansive thinking in sociotechnical engineering modeling work. For this purpose, we analyze stimulated recall interviews of four students to identify the different ways in which they experienced both relational and epistemological uncertainty during an in-class discussion activity.
more »
« less
- Award ID(s):
- 2110727
- PAR ID:
- 10632322
- Publisher / Repository:
- ASEE Conferences
- Date Published:
- Format(s):
- Medium: X
- Location:
- Portland, Oregon
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Uncertainty is an important concept in physics laboratory instruction. However, little work has examined how students reason about uncertainty beyond the introductory (intro) level. In this work we aimed to compare intro and beyond-intro students’ ideas about uncertainty. We administered a survey to students at 10 different universities with questions probing procedural reasoning about measurement, student-identified sources of uncertainty, and predictive reasoning about data distributions. We found that intro and beyond-intro students answered similarly on questions where intro students already exhibited expert-level reasoning, such as in comparing two data sets with the same mean but different spreads, identifying limitations in an experimental setup, and predicting how a data distribution would change if more data were collected. For other questions, beyond-intro students generally exhibited more expertlike reasoning than intro students, such as when determining whether two sets of data agree, identifying principles of measurement that contribute to spread, and predicting how a data distribution would change if better data were collected. Neither differences in institutions, student majors, lab courses taken, nor research experience were able to fully explain the variability between intro and beyond-intro student responses. These results call for further research to better understand how students’ ideas about uncertainty develop beyond the intro level.more » « less
-
null (Ed.)This study focuses on the kinds of uncertainty experienced by students in relation to the level and kind of students’ thinking during the implementation of a cognitively demanding science task. The Framework for K-12 Science Education together with the Next Generation Science Standards emphasize the integration of scientific knowledge with scientific practices as students try to figure out phenomena. During this process of sensemaking, students experience moments of uncertainty that are a key part of doing science and drive scientific pursuits. By examining video-records of a science lesson in which the teacher and the students worked on a cognitively demanding science task, and by analyzing students’ interviews about this lesson, we identify the types of uncertainty that students experienced during the implementation of this task across the trajectory of the lesson. Moving beyond an all or nothing approach to uncertainty, our analysis reveals different kinds of uncertainty that students can experience and presents cognitively demanding tasks as a means to integrate uncertainty into students’ experiences.more » « less
-
null; null; null (Ed.)Measurement uncertainty and experimental error are important concepts taught in undergraduate physics laboratories. Although student ideas about error and uncertainty in introductory classical mechanics lab experiments have been studied extensively, there is relatively limited research on student thinking about experimental measurement uncertainty in quantum mechanics. In this work, we used semi-structured interviews to study advanced physics students’ interpretations of fictitious data distributions from two common undergraduate laboratory experiments in quantum mechanics and one in classical mechanics. To analyze these interpretations, we developed a coding scheme that classifies student responses based on what factors they believe create un- certainty and differentiates between different types of uncertainty (e.g. imprecision, inaccuracy). We found that participants in our study expressed a variety of ideas about measurement uncertainty that varied with the context (classical/quantum) and the type of uncertainty.more » « less
-
Abstract Understanding and communicating uncertainty is a key skill needed in the practice of science. However, there has been little research on the instruction of uncertainty in undergraduate science education. Our team designed a module within an online geoscience field course which focused on explicit instruction around uncertainty and provided students with an uncertainty rating scale to record and communicate their uncertainty with a common language. Students then explored a complex, real-world geological problem about which expert scientists had previously made competing claims through geologic maps. Provided with data, expert uncertainty ratings, and the previous claims, students made new geologic maps of their own and presented arguments about their claims in written form. We analyzed these reports along with assessments of uncertainty. Most students explicitly requested geologists’ uncertainty judgments in a post-course assessment when asked why scientists might differ in their conclusions and/or utilized the rating scale unprompted in their written arguments. Through the examination of both pre- and post-course assessments of uncertainty and students’ course-based assessments, we argue that explicit instruction around uncertainty can be introduced during undergraduate coursework and could facilitate geoscience novices developing into practicing geoscientists.more » « less
An official website of the United States government

