skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The formation and propagation of human Robertsonian chromosomes
Abstract Robertsonian chromosomes are a type of variant chromosome found commonly in nature. Present in one in 800 humans, these chromosomes can underlie infertility, trisomies, and increased cancer incidence. Recognized cytogenetically for more than a century, their origins have remained mysterious. Recent advances in genomics allowed us to assemble three human Robertsonian chromosomes completely. We identify a common breakpoint and epigenetic changes in centromeres that provide insight into the formation and propagation of common Robertsonian translocations. Further investigation of the assembled genomes of chimpanzee and bonobo highlights the structural features of the human genome that uniquely enable the specific crossover event that creates these chromosomes. Resolving the structure and epigenetic features of human Robertsonian chromosomes at a molecular level paves the way to understanding how chromosomal structural variation occurs more generally, and how chromosomes evolve.  more » « less
Award ID(s):
2118743
PAR ID:
10632333
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Compartment formation in interphase chromosomes is a result of spatial segregation between euchromatin and heterochromatin on a few megabase pairs (Mbp) scale. On the sub-Mbp scales, topologically associating domains (TADs) appear as interacting domains along the diagonal in the ensemble averaged Hi-C contact map. Hi-C experiments showed that most of the TADs vanish upon deleting cohesin, while the compartment structure is maintained, and perhaps even enhanced. However, closer inspection of the data reveals that a non-negligible fraction of TADs is preserved (P-TADs) after cohesin loss. Imaging experiments show that, at the single-cell level, TAD-like structures are presenteven without cohesin. To provide a structural basis for these findings, we first used polymer simulations to show that certain TADs with epigenetic switches across their boundaries survive after depletion of loops. More importantly, the three-dimensional structures show that many of the P-TADs have sharp physical boundaries. Informed by the simulations, we analyzed the Hi-C maps (with and without cohesin) in mouse liver and human colorectal carcinoma cell lines, which affirmed that epigenetic switches and physical boundaries (calculated using the predicted 3D structures using the data-driven HIPPS method that uses Hi-C as the input) explain the origin of the P-TADs. Single-cell structures display TAD-like features in the absence of cohesin that are remarkably similar to the findings in imaging experiments. Some P-TADs, with physical boundaries, are relevant to the retention of enhancer–promoter/promoter–promoter interactions. Overall, our study shows that preservation of a subset of TADs upon removing cohesin is a robust phenomenon that is valid across multiple cell lines. 
    more » « less
  2. null (Ed.)
    Abstract We introduce the Nucleome Data Bank (NDB), a web-based platform to simulate and analyze the three-dimensional (3D) organization of genomes. The NDB enables physics-based simulation of chromosomal structural dynamics through the MEGABASE + MiChroM computational pipeline. The input of the pipeline consists of epigenetic information sourced from the Encode database; the output consists of the trajectories of chromosomal motions that accurately predict Hi-C and fluorescence insitu hybridization data, as well as multiple observations of chromosomal dynamics in vivo. As an intermediate step, users can also generate chromosomal sub-compartment annotations directly from the same epigenetic input, without the use of any DNA–DNA proximity ligation data. Additionally, the NDB freely hosts both experimental and computational structural genomics data. Besides being able to perform their own genome simulations and download the hosted data, users can also analyze and visualize the same data through custom-designed web-based tools. In particular, the one-dimensional genetic and epigenetic data can be overlaid onto accurate 3D structures of chromosomes, to study the spatial distribution of genetic and epigenetic features. The NDB aims to be a shared resource to biologists, biophysicists and all genome scientists. The NDB is available at https://ndb.rice.edu. 
    more » « less
  3. Pandey, Sumali (Ed.)
    ABSTRACT Scientific publications, textbooks, and online educational resources rely on illustrated figures to communicate about molecular structures like genes and chromosomes. Published figures have the potential to shape how learners think about these molecular structures and their functions, so it is important that figures are clear, unambiguous, and free from misleading or incorrect information. Unfortunately, we found numerous examples of figures that contain representations of genes and chromosomes with errors that reflect common molecular biology misconceptions. We found published figures featuring Y-shaped Y chromosomes, replicated chromosomes incorrectly shown with different alleles on sister chromatids, single genes portrayed as wide bands on chromosomes, and genes consisting of only a small number of nucleotides. Drawing on our research on student thinking about visual representations in molecular biology, we critique these published figures that contain such misconceptions and provide recommendations for simple modifications to figures that may help scientists, science illustrators, and science educators more accurately communicate the structure and function of genes and chromosomes. 
    more » « less
  4. Synopsis Evidence from across the tree of life suggests that epigenetic inheritance is more common than previously thought. If epigenetic inheritance is indeed as common as the data suggest, this finding has potentially important implications for evolutionary theory and our understanding of how evolution and adaptation progress. However, we currently lack an understanding of how common various epigenetic inheritance types are, and how they impact phenotypes. In this perspective, we review the open questions that need to be addressed to fully integrate epigenetic inheritance into evolutionary theory and to develop reliable predictive models for phenotypic evolution. We posit that addressing these challenges will require the collaboration of biologists from different disciplines and a focus on the exploration of data and phenomena without preconceived limits on potential mechanisms or outcomes. 
    more » « less
  5. null (Ed.)
    Most genomes within the species complex of Fusarium oxysporum are organized into two compartments: the core chromosomes (CCs) and accessory chromosomes (ACs). As opposed to CCs, which are conserved and vertically transmitted to carry out essential housekeeping functions, lineage- or strain-specific ACs are believed to be initially horizontally acquired through unclear mechanisms. These two genomic compartments are different in terms of gene density, the distribution of transposable elements, and epigenetic markers. Although common in eukaryotes, the functional importance of ACs is uniquely emphasized among fungal species, specifically in relationship to fungal pathogenicity and their adaptation to diverse hosts. With a focus on the cross-kingdom fungal pathogen F. oxysporum, this review provides a summary of the differences between CCs and ACs based on current knowledge of gene functions, genome structures, and epigenetic signatures, and explores the transcriptional crosstalk between the core and accessory genomes. 
    more » « less