Abstract We report recent findings for the magnetic field configurations of small‐scale magnetic flux ropes (SFRs) broadly defined and identified by using the Grad‐Shafranov‐based techniques for in situ measurements via the Parker Solar Probe (PSP), Solar Orbiter (SolO), and two Helios spacecraft. Since the current sheets were found to occur at boundaries of SFRs and/or inside SFRs at 1 AU via the partial variance increment (PVI) and the Grad‐Shafranov (GS) reconstruction technique by Pecora et al. (2019), we further examine such a co‐existence in this study by assessing the maximum PVI indices within SFR intervals using the above four spacecraft observations throughout the inner heliosphere (1 AU). Less than 15% of SFRs have maximum PVI indices exceeding a threshold value of 6 that is used to indicate a current sheet structure. Three representative events are selected to explain the most common situations. (a) Current sheets occur at SFR boundaries and near the center. Each could be a weak switchback feature in the time‐series profile of the gradually bipolar magnetic field rotations. (b) An SFR configuration is confirmed by both the measurement of counterstreaming electrons and the GS reconstruction result, despite that a large PVI value occurs near the SFR center which is due to an arbitrary kink instead of a current sheet. (c) A current sheet is falsely identified as an SFR where a significant PVI value (~7) occurs near the center. In the end, we discuss the necessity of using multi‐point spacecraft measurements to discern the structures associated with SFRs.
more »
« less
This content will become publicly available on June 1, 2026
Small‐Scale Magnetic Flux Rope Structures Across the Earth's Bow Shock
Abstract This work identifies and characterizes magnetic structures, especially in terms of small‐scale magnetic flux ropes (SFRs), in the solar wind and magnetosheath across the Earth's bow shock. We investigate the differences between the properties of SFR structures in these regions immediately upstream and downstream of the bow shock by employing two data analysis methods: one based on wavelet transforms and the other based on the Grad‐Shafranov (GS) detection and reconstruction techniques. In situ magnetic field and plasma data from the Magnetospheric Multiscale and Time History of Events and Macroscale Interactions during Substorms missions are used to identify these coherent structures through the two approaches. We identify thousands of SFR event intervals with a range of variable duration over a total time period of 1,000 hr in each region. We report parameters associated with the SFRs such as scale size, duration, magnetic flux content, and magnetic helicity density, derived from primarily the GS‐based analysis results. These parameters are summarized through statistical analysis, and their changes across the bow shock are shown based on comparisons of their respective distributions. We find that in general, the distributions of various parameters follow power laws. The SFR structures seem to be compressed in the magnetosheath, as compared with their counterparts in the solar wind. A significant rotation in the ‐axis defining the orientation of the structures is also seen across the bow shock. We also discuss the implications for the elongation of the SFRs in the magnetosheath along one spatial dimension.
more »
« less
- Award ID(s):
- 2229065
- PAR ID:
- 10632424
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 130
- Issue:
- 6
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The ion foreshock is highly dynamic, disturbing the bow shock and the magnetosphere‐ionosphere system. To forecast foreshock‐driven space weather effects, it is necessary to model foreshock ions as a function of upstream shock parameters. Case studies in the accompanying paper show that magnetosheath ions sometimes exhibit strong field‐aligned asymmetry toward the upstream direction, which may be responsible for enhancing magnetosheath leakage and therefore foreshock ion density. To understand the conditions leading to such asymmetry and the potential for enhanced leakage, we perform case studies and a statistical study of magnetosheath and foreshock region data surrounding ∼500 Time History of Events and Macroscale Interactions during Substorms mission bow shock crossings. We quantify the asymmetry using the heat flux along the field‐aligned direction. We show that the strong field‐aligned heat flux persists across the entire magnetosheath from the magnetopause to the bow shock. Ion distribution functions reveal that the strong heat flux is caused by a secondary thermal population. We find that stronger asymmetry events exhibit heat flux preferentially toward the upstream direction near the bow shock and occur under larger IMF strength and larger solar wind dynamic pressure and/or energy flux. Additionally, we show that near the bow shock, magnetosheath leakage is a significant contributor to foreshock ions, and through enhancing the leakage the magnetosheath ion asymmetry can modulate the foreshock ion velocity and density. Our results imply that likely due to field line draping and compression against the magnetopause that leads to a directional mirror force, modeling the foreshock ions necessitates a more global accounting of downstream conditions.more » « less
-
Abstract Using in situ measurements from the Parker Solar Probe and Wind spacecraft, we investigate the small-scale magnetic flux ropes (SFRs) and their properties inside stream interaction regions (SIRs). Within SIRs from ∼0.15 to 1 au, SFRs are found to exist in a wide range of solar wind speeds with more frequent occurrences after the stream interface, and the Alfvénicity of these structures decreases significantly with increasing heliocentric distances. Furthermore, we examine the variation of five corresponding SIRs from the same solar sources. The enhancements of suprathermal electrons within these SIRs persist at 1 au and are observed multiple times. An SFR appears to occur repeatedly with the recurring SIRs and is traversed by the Wind spacecraft at least twice. This set of SFRs has similarities in variations of the magnetic field components, plasma bulk properties, density ratio of solar wind alpha and proton particles, and unidirectional suprathermal electrons. We also show, through the detailed time-series plots and Grad–Shafranov reconstruction results, that they possess the same chirality and carry comparable amounts of magnetic flux. Lastly, we discuss the possibility for these recurring SFRs to be formed via interchange reconnection, maintain the connection with the Sun, and survive up to 1 au.more » « less
-
Hot flow anomalies (HFAs) and foreshock bubbles (FBs) are two types of transient phenomena characterized by flow deflected and hot cores bounded by one or two compressional boundaries in the foreshock. Using conjunction observations by the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission, we present an MHD HFA with a core filled with magnetosheath material around the bow shock and a typical kinetic FB associated with foreshock ions upstream of the bow shock, occurring simultaneously under the same solar wind/interplanetary magnetic field (IMF) conditions. The displacements of the bow shock moving back and forth along the sun-earth line are observed. Electron energy shows enhancements from ∼50 keV in the FB to ∼100 keV in the HFA core, suggesting additional acceleration process across the bow shock within the transient structure. The magnetosheath response of an HFA core-like structure with particle heating and electron acceleration is observed by the Magnetospheric Multiscale (MMS) mission. Ultralow frequency waves in the magnetosphere modulating cold ion energy are identified by THEMIS, driven by these transient structures. Our study improves our understanding of foreshock transients and suggests that single spacecraft observations are insufficient to reveal the whole picture of foreshock transients, leading to an underestimation of their impacts (e.g., particle acceleration energy and spatial scale of disturbances).more » « less
-
Abstract The LEXI and SMILE missions will provide soft X‐ray images of the Earth's magnetosheath and cusps after their anticipated launch in 2023 and 2024, respectively. The IBEX mission showed the potential of an Energetic Neutral Atom (ENA) instrument to image dayside magnetosheath and cusps, albeit over the long hours required to raster an image with a single pixel imager. Thus, it is timely to discuss the two imaging techniques and relevant science topics. We simulate soft X‐ray and low‐ENA images that might be observed by a virtual spacecraft during two interesting solar wind scenarios: a southward turning of the interplanetary magnetic field and a sudden enhancement of the solar wind dynamic pressure. We employ the OpenGGCM global magnetohydrodynamics model and a simple exospheric neutral density model for these calculations. Both the magnetosheath and the cusps generate strong soft X‐rays and ENA signals that can be used to extract the locations and motions of the bow shock and magnetopause. Magnetopause erosion corresponds closely to the enhancement of dayside reconnection rate obtained from the OpenGGCM model, indicating that images can be used to understand global‐scale magnetopause reconnection. When dayside imagers are installed with high‐ENA inner‐magnetosphere and FUV/UV aurora imagers, we can trace the solar wind energy flow from the bow shock to the magnetosphere and then to the ionosphere in a self‐standing manner without relying upon other observatories. Soft X‐ray and/or ENA imagers can also unveil the dayside exosphere density structure and its response to space weather.more » « less
An official website of the United States government
