International Ocean Discovery Program (IODP) Expedition 385 focused on the impact of sill emplacement and fluid flow on subsurface biogeochemical processes in organic-rich sediments of the Guaymas Basin. It resulted in the drilling of eight sites with contrasted settings; Sites U1545 and U1546 were drilled in the northern basin and allowed the recovery of a deep sill at Site U1546; Sites U1547 and U1548 were drilled on an active hydrothermal vent called Ringvent; Sites U1549 and U1552 were drilled on the Sonora margin where cold seeps and hydrates were identified; Site U1550 was sampled as a replicate of Deep Sea Drilling Project (DSDP) Leg 64 Site 481 on an axial trough; and Site U1551 was drilled ~29 km southeast of the axial graben and was mainly terrigenous. The quantitative X-ray fluorescence data presented here were measured on squeeze cakes retrieved after squeezing of whole-round core segments for pore water extraction. Major elements (Al, Ca, Cl, Fe, K, Mg, Mn, Na, P, Si, Ti, and S) as well as minor/trace elements (As, Ba, Br, Ce, Co, Cr, Cu, La, Mo, Nb, Ni, Pb, Rb, Sc, Sr, V, Y, Zn, and Zr) are provided in this data report.
more »
« less
This content will become publicly available on December 1, 2025
Minimum detectable levels of biologically relevant elements in P8 filter paper standard using PIXE spectroscopy
PIXE analysis was conducted on p8 fisher brand filter paper samples soaked in elemental standard solutions to determine the minimum detectable levels of Al, Si, P, S, Cl, K, Ca, Cr, Fe, Ni, Cu, and Se. All samples were analyzed with beam parameters of 2 µC incident charge, and beam current of less than 2 nA at 2 MeV beam energy. Minimum detectable levels were obtained by analyzing the x-ray spectrum in the GeoPIXE analysis package, and the data for each element would be averaged over all collected spectra. The minimum detectable level in parts per million was found to be on average 9.59 for Al, 4.6 for Si, 3.23 for P, 2.27 for S, 1.82 for Cl, 1.15 for K, 0.88 for Ca, 0.51 for Cr, 0.07 for Mn, 0.54 for Fe, 1.59 for Ni, 2.0 for Zn, 1.55 for Cu, and 6.5 for Se. Minimal deviation from the averaged values was observed, except in cases where samples contained high concentrations of elements with overlapping X-ray energies.
more »
« less
- Award ID(s):
- 2210722
- PAR ID:
- 10632534
- Editor(s):
- Bogdanović; Iva; Lorenz, Katharina
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
- Volume:
- 557
- Issue:
- C
- ISSN:
- 0168-583X
- Page Range / eLocation ID:
- 165544
- Subject(s) / Keyword(s):
- PIXE, Ion Beam Analysis
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Particulate matter (PM) found in the air is one of the major sources of pollution and air‐borne diseases. Therefore, it is imperative to examine the elemental concentration distribution of the PM to identify the pollutant sources. In this study, it has demonstrated the capabilities of micro‐particle‐induced X‐ray emission (micro‐PIXE) spectroscopy in quantitative analysis of air samples collected from the Old Delhi outdoor market and indoor locations in the Panjab University hostel in the winter months. A 2‐million electronvolts energetic scanning proton micro‐beam (diameter ≈1 µm2) is used in micro‐PIXE experiments generating high‐resolution elemental maps of different regions of interest (ROI). Micro‐PIXE along with the GeoPIXE analysis provides a non‐destructive, standard‐less, and ng/mg level‐sensitive tool for the investigation of elemental distributions and highlighting pixels, which correlates to specific concentration ratios between elements at ROIs, thereby enabling a comprehensive understanding of the source of each elemental particulate. Si, Ca, and K detected in indoor PM suggest the source to soil erosion and crop burning, while high S levels in outdoor PM are primarily associated with coal power plants. Additionally, Sc, Ti, Cr, Mn, and Zn are found in outdoor samples, while indoor locations also contained trace amounts of V, Co, and Cu.more » « less
-
Wildfires significantly influence the environmental distribution of various elements through their fire-induced input and mobilization, yet little is known about their effects on the forest floor in Siberian forests. The present study evaluated the effects of spring wildfires of various severities on the levels of major and minor (Ca, Al, Fe, S, Mg, K, Na, Mn, P, Ti, Ba, and Sr) trace and ultra-trace (B, Co, Cr, Cu, Ni, Se, V, Zn, Pb, As, La, Sn, Sc, Sb, Be, Bi, Hg, Li, Mo, and Cd) elements in the forest floors of Siberian forests. The forest floor (Oi layer) samples were collected immediately following wildfires in Scots pine (Pinus sylvestris L.), larch (Larix sibirica Ledeb.), spruce (Picea obovata Ledeb.), and birch (Betula pendula Roth) forests. Total concentrations of elements were determined using inductively coupled plasma–optical emission spectroscopy. All fires resulted in a decrease in organic matter content and an increase in mineral material content and pH values in the forest floor. The concentrations of most elements studied in a burned layer of forest floor were statistically significantly higher than in unburned precursors. Sb and Sn showed no statistically significant changes. The forest floor in the birch forest showed a higher increase in mineral material content after the fire and higher levels of most elements studied than the burned coniferous forest floors. Ca was a predominant element in both unburned and burned samples in all forests studied. Our study highlighted the role of wildfires in Siberia in enhancing the levels of geochemical elements in forest floor and the effect of forest type and fire severity on ash characteristics. The increased concentrations of elements represent a potential source of surface water contamination with toxic and eutrophying elements if wildfire ash is transported with overland flow.more » « less
-
We have been studying the stratigraphy of core LWB 4-5 taken in 2001 in the Hudson River 1.5 km north of the transit of the Peekskill meteorite in October 1992. We measured magnetic susceptibility and elemental composition at 1 cm intervals down to 50 cm and then at 5 cm intervals down to 108 cm. Magnetic susceptibilities are unusually high (above 20 cgs units) from 12-19 cm and again at 31 cm. The level at 31 cm contains mm-sized fragments of Fe oxide. X-Ray Fluorescence spectroscopy revealed high Ni/Cr levels concentrated from 9-11 cm and again below 97 cm. We found tektite-like spheroids, dumbbells and teardrops from 8-15 cm depth. They are glasses and they contain appreciable K, consistent with an origin as true tektites but we have not identified the source. Overall, we interpret the high susceptibility, high Ni/Cr and possibly tektite bearing layer as a resulting from the fall of one of the bodies postulated to have fallen with the Peekskill meteorite in 1992. A 1992 age for the top of the Peekskill layer at 8-9 cm depth is consistent with a uniform sedimentation rate in the core and the occurrence of the base of modern Pb at 97 cm depth. From previous work on cores from Central Park Lake, the base of modern Pb represents the year 1880 A.D. We also found other prominent horizons whose ages fit a linear sedimentation rate model. We found a step change in As/Pb ratio whose inferred age matches 1988, the year when Pb and Cu arsenide were banned as pesticides. Our core exhibits peaks in Ca and Sr content and a minor susceptibility peak at 17.5 depth that may represent the 1980 "Great Catskill Toilet Flush" Hudson River flood event. The Catskills contain abundant marine limestone that could serve as a source for Ca and Sr. A prominent susceptibility peak at 37.5 cm could represent a flood in 1955. We also found a peak in Pb at 50 cm depth whose inferred age matches that of the cessation of incinerator burning in 1938. 137Cs and 210Pb ages are in progress and may be available by the time of the meeting. The high Pb and As levels in parts of LWB 4-5 are supported by examination of the coarse fraction. We found two bright orange grains, both with carbon rich coatings. One grain analyses on the X-ray analyzer of an SEM as 8%C, 70% Pb, 17%As and 2% Cu. The second grain analyzes as 10% C, 43% Pb, 1% Ca, 2% P, 27% As, 4% Fe, 2% Ni, 1% Si, and 6% Zn. All analyses are in wt.% on an oxygen free basis.more » « less
-
The trace metal geochemistry of atmospheric dust and terrestrial surface particles were studied on the Qatar Peninsula from February 2014 to November 2015. We included samples of the mega dust-storm event on 01–02 April 2015. Atmospheric dust samples were collected using passive dust traps. Terrestrial surface deposits of recent dust accumulation and traffic particulate from roads were also sampled. All samples were total acid digested and analyzed for major and trace elements using ICP-OES analyzer. The concentration of thirteen elements (Ca, Mg, Ag, As, Cd, Cr, Cu, Mo, Ni, Se, Sn, Sr, Zn) were enriched in atmospheric dust samples, relative to upper continental crust (UCC). Calcium was especially enriched by up to 435% relative to UCC. About 33% of the total sample mass was CaCO3, reflecting the composition of surface rocks and soils in the source areas. Of the elements typically associated with anthropogenic activity, Ag, Ni, and Zn were most enriched relative to UCC, with enrichment factors (EF) of 182%, 233%, and 209%, respectively. Other metals, which normally reflect anthropogenic sources, including Pb and V, were not significantly enriched, with enrichment factors of 25% and 3%, respectively. Major elements (Al, Mn, Fe) were depleted (− 58%, − 35%, and − 5%, respectively) relative to UCC due to the large dilution effect of the enrichment of CaCO3. Back trajectories were determined at the date of sampling for each sample using the NOAA HYSPLIT model. These showed that the source of the dust particles was almost equally divided between northerly and southerly sources, except one sample, which appeared to originate from the west. More variability in particle source locations were observed during the winter months (October to March). Samples from the mega-dust storm were solubilized using an acetic acid-hydroxylamine hydrochloride leach procedure to obtain an upper estimate of the potential contribution of bioactive elements to surface seawater. The leach procedure solubilized a significant fraction of almost all elements. Ca was the element most affected (81% removed) because of the carbonate minerals present. Bioactive elements like Fe (25%) and P (58%) were also significantly solubilized. Because river input is so small to the Arabian Gulf, this solubilized fraction of dust is likely a major source of nutrients to surface seawater. Enrichment factors were also calculated with respect to the average composition of terrestrial surface deposits (TSD). Samples are not enriched significantly with respect to major components (EF < 2), with a depletion in Ca, K, Na in dust storm samples, reflecting a different origin. A significant enrichment of the same trace metals is evident in dust deposits and in traffic samples, but not in dust storms: Cu, Mo, Ni, Zn, possibly deriving from local atmospheric sources (traffic, industries). Samples with northern and southern origins were compared to see if the composition could be used to identify source. Only three elements were observed to be statistically different. Pb and Na were higher in samples from the south, while Cr was higher in those from the north.more » « less
An official website of the United States government
