skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 16, 2026

Title: Metabolic Flux Modeling in Marine Ecosystems
Ocean metabolism constitutes a complex, multiscale ensemble of biochemical reaction networks harbored within and between the boundaries of a myriad of organisms. Gaining a quantitative understanding of how these networks operate requires mathematical tools capable of solving in silico the resource allocation problem each cell faces in real life. Toward this goal, stoichiometric modeling of metabolism, such as flux balance analysis, has emerged as a powerful computational tool for unraveling the intricacies of metabolic processes in microbes, microbial communities, and multicellular organisms. Here, we provide an overview of this approach and its applications, future prospects, and practical considerations in the context of marine sciences. We explore how flux balance analysis has been employed to study marine organisms, help elucidate nutrient cycling, and predict metabolic capabilities within diverse marine environments, and highlight future prospects for this field in advancing our knowledge of marine ecosystems and their sustainability.  more » « less
Award ID(s):
2246707
PAR ID:
10632720
Author(s) / Creator(s):
;
Publisher / Repository:
Annual Reviews of Marine Science
Date Published:
Journal Name:
Annual Review of Marine Science
Volume:
17
Issue:
1
ISSN:
1941-1405
Page Range / eLocation ID:
593 to 620
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Metabolism is the complex network of chemical reactions occurring within every cell and organism, maintaining life, mediating ecosystem processes and affecting Earth’s climate. Experiments and models of microbial metabolism often focus on one specific scale, overlooking the connectivity between molecules, cells and ecosystems. Here we highlight quantitative metabolic principles that exhibit commonalities across scales, which we argue could help to achieve an integrated perspective on microbial life. Mass, electron and energy balance provide quantitative constraints on their flow within metabolic networks, organisms and ecosystems, shaping how each responds to its environment. The mechanisms underlying these flows, such as enzyme–substrate interactions, often involve encounter and handling stages that are represented by equations similar to those for cells and resources, or predators and prey. We propose that these formal similarities reflect shared principles and discuss how their investigation through experiments and models may contribute to a common language for studying microbial metabolism across scales. 
    more » « less
  2. Hallam, Steven J. (Ed.)
    ABSTRACT Nitrite-oxidizing bacteria belonging to the genus Nitrospira mediate a key step in nitrification and play important roles in the biogeochemical nitrogen cycle and wastewater treatment. While these organisms have recently been shown to exhibit metabolic flexibility beyond their chemolithoautotrophic lifestyle, including the use of simple organic compounds to fuel their energy metabolism, the metabolic networks controlling their autotrophic and mixotrophic growth remain poorly understood. Here, we reconstructed a genome-scale metabolic model for Nitrospira moscoviensis ( i Nmo686) and used flux balance analysis to evaluate the metabolic networks controlling autotrophic and formatotrophic growth on nitrite and formate, respectively. Subsequently, proteomic analysis and [ 13 C]bicarbonate and [ 13 C]formate tracer experiments coupled to metabolomic analysis were performed to experimentally validate model predictions. Our findings corroborate that N. moscoviensis uses the reductive tricarboxylic acid cycle for CO 2 fixation, and we also show that N. moscoviensis can indirectly use formate as a carbon source by oxidizing it first to CO 2 followed by reassimilation, rather than direct incorporation via the reductive glycine pathway. Our study offers the first measurements of Nitrospira ’s in vivo central carbon metabolism and provides a quantitative tool that can be used for understanding and predicting their metabolic processes. IMPORTANCE Nitrospira spp. are globally abundant nitrifying bacteria in soil and aquatic ecosystems and in wastewater treatment plants, where they control the oxidation of nitrite to nitrate. Despite their critical contribution to nitrogen cycling across diverse environments, detailed understanding of their metabolic network and prediction of their function under different environmental conditions remains a major challenge. Here, we provide the first constraint-based metabolic model of Nitrospira moscoviensis representing the ubiquitous Nitrospira lineage II and subsequently validate this model using proteomics and 13 C-tracers combined with intracellular metabolomic analysis. The resulting genome-scale model will serve as a knowledge base of Nitrospira metabolism and lays the foundation for quantitative systems biology studies of these globally important nitrite-oxidizing bacteria. 
    more » « less
  3. Abstract Constraint-based modeling has been applied to analyze metabolism of numerous organisms via flux balance analysis and genome-scale metabolic models, including mammalian cells such as the Chinese hamster ovary (CHO) cells—the principal cell factory platform for therapeutic protein production. Unfortunately, the application of genome-scale model methodologies using the conventional biomass objective function is challenged by the presence of overly-restrictive constraints, including essential amino acid exchange fluxes that can lead to improper predictions of growth rates and intracellular flux distributions. In this study, these constraints are found to be reliably predicted by an “essential nutrient minimization” approach. After modifying these constraints with the predicted minimal uptake values, a series of unconventional objective functions are applied to minimize each individual non-essential nutrient uptake rate, revealing useful insights about metabolic exchange rates and flows across different cell lines and culture conditions. This unconventional uptake-rate objective functions (UOFs) approach is able to distinguish metabolic differences between three distinct CHO cell lines (CHO-K1, -DG44, and -S) not directly observed using the conventional biomass growth maximization solutions. Further, a comparison of model predictions with experimental data from literature correctly correlates with the specific CHO-DG44-derived cell line used experimentally, and the corresponding dual prices provide fruitful information concerning coupling relationships between nutrients. The UOFs approach is likely to be particularly suited for mammalian cells and other complex organisms which contain multiple distinct essential nutrient inputs, and may offer enhanced applicability for characterizing cell metabolism and physiology as well as media optimization and biomanufacturing control. 
    more » « less
  4. Abstract The modeling of rates of biochemical reactions—fluxes—in metabolic networks is widely used for both basic biological research and biotechnological applications. A number of different modeling methods have been developed to estimate and predict fluxes, including kinetic and constraint‐based (Metabolic Flux Analysis and flux balance analysis) approaches. Although different resources exist for teaching these methods individually, to‐date no resources have been developed to teach these approaches in an integrative way that equips learners with an understanding of each modeling paradigm, how they relate to one another, and the information that can be gleaned from each. We have developed a series of modeling simulations in Python to teach kinetic modeling, metabolic control analysis, 13C‐metabolic flux analysis, and flux balance analysis. These simulations are presented in a series of interactive notebooks with guided lesson plans and associated lecture notes. Learners assimilate key principles using models of simple metabolic networks by running simulations, generating and using data, and making and validating predictions about the effects of modifying model parameters. We used these simulations as the hands‐on computer laboratory component of a four‐day metabolic modeling workshop and participant survey results showed improvements in learners' self‐assessed competence and confidence in understanding and applying metabolic modeling techniques after having attended the workshop. The resources provided can be incorporated in their entirety or individually into courses and workshops on bioengineering and metabolic modeling at the undergraduate, graduate, or postgraduate level. 
    more » « less
  5. ABSTRACT Biofilms are structured communities of tightly associated cells that constitute the predominant state of bacterial growth in natural and human-made environments. Although the core genetic circuitry that controls biofilm formation in model bacteria such as Bacillus subtilis has been well characterized, little is known about the role that metabolism plays in this complex developmental process. Here, we performed a time-resolved analysis of the metabolic changes associated with pellicle biofilm formation and development in B. subtilis by combining metabolomic, transcriptomic, and proteomic analyses. We report surprisingly widespread and dynamic remodeling of metabolism affecting central carbon metabolism, primary biosynthetic pathways, fermentation pathways, and secondary metabolism. Most of these metabolic alterations were hitherto unrecognized as biofilm associated. For example, we observed increased activity of the tricarboxylic acid (TCA) cycle during early biofilm growth, a shift from fatty acid biosynthesis to fatty acid degradation, reorganization of iron metabolism and transport, and a switch from acetate to acetoin fermentation. Close agreement between metabolomic, transcriptomic, and proteomic measurements indicated that remodeling of metabolism during biofilm development was largely controlled at the transcriptional level. Our results also provide insights into the transcription factors and regulatory networks involved in this complex metabolic remodeling. Following upon these results, we demonstrated that acetoin production via acetolactate synthase is essential for robust biofilm growth and has the dual role of conserving redox balance and maintaining extracellular pH. This report represents a comprehensive systems-level investigation of the metabolic remodeling occurring during B. subtilis biofilm development that will serve as a useful road map for future studies on biofilm physiology. IMPORTANCE Bacterial biofilms are ubiquitous in natural environments and play an important role in many clinical, industrial, and ecological settings. Although much is known about the transcriptional regulatory networks that control biofilm formation in model bacteria such as Bacillus subtilis , very little is known about the role of metabolism in this complex developmental process. To address this important knowledge gap, we performed a time-resolved analysis of the metabolic changes associated with bacterial biofilm development in B. subtilis by combining metabolomic, transcriptomic, and proteomic analyses. Here, we report a widespread and dynamic remodeling of metabolism affecting central carbon metabolism, primary biosynthetic pathways, fermentation pathways, and secondary metabolism. This report serves as a unique hypothesis-generating resource for future studies on bacterial biofilm physiology. Outside the biofilm research area, this work should also prove relevant to any investigators interested in microbial physiology and metabolism. 
    more » « less