Abstract LSST Camera CCDs produced by the manufacturer e2v exhibit strong and novel residual charge images when exposed to bright sources. These manifest in images following bright exposures both in the same pixel areas as the bright source, and in the pixels trailing between the source and the serial register. Both of these pose systematic challenges to the Rubin Observatory Legacy Survey of Space and Time instrument signature removal. The latter trail region is especially impactful as it affects a much larger pixel area in a less well defined position. In our study of this effect at UC Davis, we imaged bright spots to characterize these residual charge effects. We find a strong dependence of the residual charge on the parallel clocking scheme, including the relative levels of the clocking voltages, and the timing of gate phase transition during the parallel transfer. Our study points to independent causes of residual charge in the bright spot region and trail region. We propose potential causes in both regions and suggest methodologies for minimizing residual charge. We consider the trade-offs of these methods including decreasing the camera's full well and dynamic range at the high end. The voltage scheme in the main camera was altered to address this effect accordingly.
more »
« less
Science application driven optimization of LSSTCam charge-coupled device clocking
We outline the scientific motivation for reducing the systematics in the image sensors used in the LSST. Some examples are described, leading to lab investigations. The CCD250 (Teledyne-e2v) and STA3900 Imaging Technology Laboratory (ITL) charge-coupled devices (CCDs) used in Rubin Observatory’s LSSTCam are tested under realistic LSST f/1.2 optical beam in a lab setup. In the past, this facility has been used to characterize these CCDs, exploring the systematic errors due to charge transport. Now, this facility is being used to optimize the clocking scheme and voltages. The effect of different clocking schemes on the on-chip systematics such as non-linear crosstalk, noise, persistence, and photon transfer is explored. The goal is to converge on an optimal configuration for the LSSTCam CCDs, which minimizes resulting dark energy science systematics.
more »
« less
- Award ID(s):
- 2205095
- PAR ID:
- 10632887
- Publisher / Repository:
- J. Astron. Telesc. Instrum. Syst.
- Date Published:
- Journal Name:
- Journal of Astronomical Telescopes, Instruments, and Systems
- Volume:
- 11
- Issue:
- 01
- ISSN:
- 2329-4124
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The DArk Matter In CCDs at Modane (DAMIC-M) experiment is designed to search for light dark matter (mχ< 10 GeV/c2) at the Laboratoire Souterrain de Modane (LSM) in France. DAMIC-M will use skipper charge-coupled devices (CCDs) as a kg-scale active detector target. Its single-electron resolution will enable eV-scale energy thresholds and thus world-leading sensitivity to a range of hidden sector dark matter candidates. A DAMIC-M prototype, the Low Background Chamber (LBC), has been taking data at LSM since 2022. The LBC provides a low-background environment, which has been used to characterize skipper CCDs, study dark current, and measure radiopurity of materials planned for DAMIC-M. It also allows testing of various subsystems like readout electronics, data acquisition software, and slow control. This paper describes the technical design and performance of the LBC.more » « less
-
ABSTRACT We explore synergies between the Nancy Grace Roman Space Telescope and the Vera Rubin Observatory’s Legacy Survey of Space and Time (LSST). Specifically, we consider scenarios where the currently envisioned survey strategy for the Roman Space Telescope’s High Latitude Survey (HLS reference), i.e. 2000 deg2 in four narrow photometric bands is altered in favour of a strategy of rapid coverage of the LSST area (to full LSST depth) in one band. We find that in only five months, a survey in the W-band can cover the full LSST survey area providing high-resolution imaging for >95 per cent of the LSST Year 10 gold galaxy sample. We explore a second, more ambitious scenario where the Roman Space Telescope spends 1.5 yr covering the LSST area. For this second scenario, we quantify the constraining power on dark energy equation-of-state parameters from a joint weak lensing and galaxy clustering analysis. Our survey simulations are based on the Roman Space Telescope exposure-time calculator and redshift distributions from the CANDELS catalogue. Our statistical uncertainties account for higher order correlations of the density field, and we include a wide range of systematic effects, such as uncertainties in shape and redshift measurements, and modelling uncertainties of astrophysical systematics, such as galaxy bias, intrinsic galaxy alignment, and baryonic physics. We find a significant increase in constraining power for the joint LSST + HLS wide survey compared to LSST Y10 (FoMHLSwide = 2.4 FoMLSST) and compared to LSST + HLS (FoMHLSwide = 5.5 FoMHLSref).more » « less
-
The DAMIC experiment employs large-area, thick charge-coupled devices (CCDs) to search for the interactions of low-mass dark matter particles in the galactic halo with silicon atoms in the CCD target. From 2017 to 2019, DAMIC collected data with a seven-CCD array (40-gram target) installed in the SNOLAB underground laboratory. We report dark-matter search results, including a conspicuous excess of events above the background model below 200 V_{ee} V e e , whose origin remains unknown. We present details of the published spectral analysis, and update on the deployment of skipper CCDs to perform a more precise measurement by early 2023.more » « less
-
Eleanore T. Wurtzel (Ed.)Carotenoid cleavage dioxygenases (CCDs) constitute a superfamily of enzymes that are found in all domains of life where they play key roles in the metabolism of carotenoids and apocarotenoids as well as certain phenylpropanoids such as resveratrol. Interest in these enzymes stems not only from their biological importance but also from their remarkable catalytic properties including their regioselectivity, their ability to accommo- date diverse substrates, and the additional activities (e.g., isomerase) that some of these enzyme possess. X-ray crystallography is a key experimental approach that has allowed detailed investigation into the structural basis behind the interesting biochem- ical features of these enzymes. Here, we describe approaches used by our lab that have proven successful in generating single crystals of these enzymes in resting or ligand-bound states for high-resolution X-ray diffraction analysis.more » « less
An official website of the United States government

