Federated learning (FL) enables collaborative model training while preserving user data privacy by keeping data local. Despite these advantages, FL remains vulnerable to privacy attacks on user updates and model parameters during training and deployment. Secure aggregation protocols have been proposed to protect user updates by encrypting them, but these methods often incur high computational costs and are not resistant to quantum computers. Additionally, differential privacy (DP) has been used to mitigate privacy leakages, but existing methods focus on secure aggregation or DP, neglecting their potential synergies. To address these gaps, we introduce Beskar, a novel framework that provides post-quantum secure aggregation, optimizes computational overhead for FL settings, and defines a comprehensive threat model that accounts for a wide spectrum of adversaries. We also integrate DP into different stages of FL training to enhance privacy protection in diverse scenarios. Our framework provides a detailed analysis of the trade-offs between security, performance, and model accuracy, representing the first thorough examination of secure aggregation protocols combined with various DP approaches for post-quantum secure FL. Beskar aims to address the pressing privacy and security issues FL while ensuring quantum-safety and robust performance.
more »
« less
Federated Split Learning for Human Activity Recognition with Differential Privacy
This paper proposes a novel intelligent human activity recognition (HAR) framework based on a new design of Federated Split Learning (FSL) with Differential Privacy (DP) over edge networks. Our FSL-DP framework leverages both accelerometer and gyroscope data, achieving significant improvements in HAR accuracy. The evaluation includes a detailed comparison between traditional Federated Learning (FL) and our FSL framework, showing that the FSL framework outperforms FL models in both accuracy and loss metrics. Additionally, we examine the privacy-performance trade-off under different data settings in the DP mechanism, highlighting the balance between privacy guarantees and model accuracy. The results also indicate that our FSL framework achieves faster communication times per training round compared to traditional FL, further emphasizing its efficiency and effectiveness. This work provides valuable insight and a novel framework which was tested on a real-life dataset.
more »
« less
- Award ID(s):
- 2244294
- PAR ID:
- 10632900
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3315-0805-0
- Page Range / eLocation ID:
- 1 to 2
- Format(s):
- Medium: X
- Location:
- Las Vegas, NV, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Differentially Private Federated Learning (DP-FL) has garnered attention as a collaborative machine learning approach that ensures formal privacy. Most DP-FL approaches ensure DP at the record-level within each silo for cross-silo FL. However, a single user's data may extend across multiple silos, and the desired user-level DP guarantee for such a setting remains unknown. In this study, we present Uldp-FL, a novel FL framework designed to guarantee user-level DP in cross-silo FL where a single user's data may belong to multiple silos. Our proposed algorithm directly ensures user-level DP through per-user weighted clipping, departing from group-privacy approaches. We provide a theoretical analysis of the algorithm's privacy and utility. Additionally, we improve the utility of the proposed algorithm with an enhanced weighting strategy based on user record distribution and design a novel private protocol that ensures no additional information is revealed to the silos and the server. Experiments on real-world datasets show substantial improvements in our methods in privacy-utility trade-offs under user-level DP compared to baseline methods. To the best of our knowledge, our work is the first FL framework that effectively provides user-level DP in the general cross-silo FL setting.more » « less
-
Federated learning (FL) enables distributed agents to collaboratively learn a centralized model without sharing their raw data with each other. However, data locality does not provide sufficient privacy protection, and it is desirable to facilitate FL with rigorous differential privacy (DP) guarantee. Existing DP mechanisms would introduce random noise with magnitude proportional to the model size, which can be quite large in deep neural networks. In this paper, we propose a new FL framework with sparsification-amplified privacy. Our approach integrates random sparsification with gradient perturbation on each agent to amplify privacy guarantee. Since sparsification would increase the number of communication rounds required to achieve a certain target accuracy, which is unfavorable for DP guarantee, we further introduce acceleration techniques to help reduce the privacy cost. We rigorously analyze the convergence of our approach and utilize Renyi DP to tightly account the end-to-end DP guarantee. Extensive experiments on benchmark datasets validate that our approach outperforms previous differentially-private FL approaches in both privacy guarantee and communication efficiency.more » « less
-
Machine Learning (ML) algorithms have shown quite promising applications in smart meter data analytics enabling intelligent energy management systems for the Advanced Metering Infrastructure (AMI). One of the major challenges in developing ML applications for the AMI is to preserve user privacy while allowing active end-users participation. This paper addresses this challenge and proposes Differential Privacy-enabled AMI with Federated Learning (DP-AMI-FL), framework for ML-based applications in the AMI. This framework provides two layers of privacy protection: first, it keeps the raw data of consumers hosting ML applications at edge devices (smart meters) with Federated Learning (FL), and second, it obfuscates the ML models using Differential Privacy (DP) to avoid privacy leakage threats on the models posed by various inference attacks. The framework is evaluated by analyzing its performance on a use case aimed to improve Short-Term Load Forecasting (STLF) for residential consumers having smart meters and home energy management systems. Extensive experiments demonstrate that the framework when used with Long Short-Term Memory (LSTM) recurrent neural network models, achieves high forecasting accuracy while preserving users data privacy.more » « less
-
Sparse basis recovery is a classical and important statistical learning problem when the number of model dimensions p is much larger than the number of samples n. However, there has been little work that studies sparse basis recovery in the Federated Learning (FL) setting, where the client data’s differential privacy (DP) must also be simultaneously protected. In particular, the performance guarantees of existing DP-FL algorithms (such as DP-SGD) will degrade significantly when p >> n, and thus, they will fail to learn the true underlying sparse model accurately. In this work, we develop a new differentially private sparse basis recovery algorithm for the FL setting, called SPriFed-OMP. SPriFed-OMP converts OMP (Orthogonal Matching Pursuit) to the FL setting. Further, it combines SMPC (secure multi-party computation) and DP to ensure that only a small amount of noise needs to be added in order to achieve differential privacy. As a result, SPriFed-OMP can efficiently recover the true sparse basis for a linear model with only O(sqrt(p)) samples. We further present an enhanced version of our approach, SPriFed-OMP-GRAD based on gradient privatization, that improves the performance of SPriFed-OMP. Our theoretical analysis and empirical results demonstrate that both SPriFed-OMP and SPriFed-OMP-GRAD terminate in a small number of steps, and they significantly outperform the previous state-of-the-art DP-FL solutions in terms of the accuracy-privacy trade-off.more » « less
An official website of the United States government

