skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 7, 2025

Title: Near equivalence of polarizability and bond order flux metrics for describing covalent bond rearrangements
Identification of the breaking point for the chemical bond is essential for our understanding of chemical reactivity.  more » « less
Award ID(s):
2313791
PAR ID:
10632921
Author(s) / Creator(s):
;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
26
Issue:
43
ISSN:
1463-9076
Page Range / eLocation ID:
27459 to 27465
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bond order quantifies the number of electrons dressed-exchanged between two atoms in a material and is important for understanding many chemical properties. Diatomic molecules are the smallest molecules possessing chemical bonds and play key roles in atmospheric chemistry, biochemistry, lab chemistry, and chemical manufacturing. Here we quantum-mechanically calculate bond orders for 288 diatomic molecules and ions. For homodiatomics, we show bond orders correlate to bond energies for elements within the same chemical group. We quantify and discuss how semicore electrons weaken bond orders for elements having diffuse semicore electrons. Lots of chemistry is effected by this. We introduce a first-principles method to represent orbital-independent bond order as a sum of orbital-dependent bond order components. This bond order component analysis (BOCA) applies to any spin-orbitals that are unitary transformations of the natural spin-orbitals, with or without periodic boundary conditions, and to non-magnetic and (collinear or non-collinear) magnetic materials. We use this BOCA to study all period 2 homodiatomics plus Mo 2 , Cr 2 , ClO, ClO − , and Mo 2 (acetate) 4 . Using Manz's bond order equation with DDEC6 partitioning, the Mo–Mo bond order was 4.12 in Mo 2 and 1.46 in Mo 2 (acetate) 4 with a sum of bond orders for each Mo atom of ∼4. Our study informs both chemistry research and education. As a learning aid, we introduce an analogy between bond orders in materials and message transmission in computer networks. We also introduce the first working quantitative heuristic model for all period 2 homodiatomic bond orders. This heuristic model incorporates s–p mixing to give heuristic bond orders of ¾ (Be 2 ), 1¾ (B 2 ), 2¾ (C 2 ), and whole number bond orders for the remaining period 2 homodiatomics. 
    more » « less
  2. When employed in a dense suspension, dynamic covalent chemistry between particles and the suspending medium leads to tunable chemical friction. This chemical friction mimics physical friction but is stickier, leading to tunable rheopexy. 
    more » « less
  3. ABSTRACT The chemical bond is a fundamental concept in chemistry, and various models and descriptors have evolved since the advent of quantum mechanics. This study extends the overlap density and its topological descriptors (OP/TOP) to multiconfigurational wavefunctions. We discuss a comparative analysis of OP/TOP descriptors using CASSCF and DCD‐CAS(2) wavefunctions for a diverse range of molecular systems, including X–O bonds in X–OH (XH, Li, Na, H2B, H3C, H2N, HO, F) and Li–X′ (XF, Cl, and Br). Results show that OP/TOP aligns with bonding models like the quantum theory of atoms in molecules (QTAIM) and local vibrational modes theory, revealing insights such as overlap densities shifting towards the more electronegative atom in polar bonds. The Li–F dissociation profile using OP/TOP descriptors demonstrated sensitivity to ionic/neutral inversion during Li–F dissociation, highlighting their potential for elucidating complex bond phenomena and offering new avenues for understanding multiconfigurational chemical bond dynamics. 
    more » « less
  4. In this work, we extend a previously developed Raman bond model to periodic slab systems for interpreting chemical enhancements of surface-enhanced Raman scattering (SERS). The Raman bond model interprets chemical enhancements as interatomic charge flow modulations termed Raman bonds. Here, we show that the Raman bond model offers a unified interpretation of chemical enhancements for localized and periodic systems. As a demonstration of the Raman bond model, we study model systems consisting of CO and pyridine molecules on Ag clusters and slabs. We find that for both localized and periodic systems, the dominant Raman bonds are distributed near the molecule–metal interface and, therefore, the chemical enhancements are determined by a common Raman bond pattern. The effects of surface coverage, thickness, and roughness on the chemical enhancements have been studied, which shows that decreasing surface coverage or creating surface roughness increases chemical enhancements. In both of these cases, the inter-fragment charge flow connectivity is improved due to more dynamic polarization at the interface. The chemical enhancement is shown to scale with the inter-fragment charge flow to the fourth power. Since the inter-fragment charge flow is determined by the charge transfer excitation energy, the Raman bond model is connected to the transition-based analysis of chemical enhancements. We also show that the SERS spectra of localized and periodic systems normalized by inter-fragment charge flows can be unified. In summary, the Raman bond model offers a unique framework for understanding SERS spectra in terms of Raman bond distributions and offers a connection between localized and periodic model systems of SERS studies. 
    more » « less
  5. Time-resolved X-ray photoelectron spectroscopy (TR-XPS) is used in a simulation study to monitor the excited state intramolecular proton transfer between oxygen and nitrogen atoms in 2-(iminomethyl)phenol. Real-time monitoring of the chemical bond breaking and forming processes is obtained through the time evolution of excited-state chemical shifts. By employing individual atomic probes of the proton donor and acceptor atoms, we predict distinct signals with opposite chemical shifts of the donor and acceptor groups during proton transfer. Details of the ultrafast bond breaking and forming dynamics are revealed by extending the classical electron spectroscopy chemical analysis to real time. Through a comparison with simulated time-resolved photoelectron spectroscopy at the valence level, the distinct advantage of TR-XPS is demonstrated thanks to its atom specificity. 
    more » « less