Transit-time damping (TTD) is a process in which the magnetic mirror force – induced by the parallel gradient of magnetic field strength – interacts with resonant plasma particles in a time-varying magnetic field, leading to the collisionless damping of electromagnetic waves and the resulting energization of those particles through the perpendicular component of the electric field,$$E_\perp$$. In this study, we utilize the recently developed field–particle correlation technique to analyse gyrokinetic simulation data. This method enables the identification of the velocity-space structure of the TTD energy transfer rate between waves and particles during the damping of plasma turbulence. Our analysis reveals a unique bipolar pattern of energy transfer in the velocity-space characteristic of TTD. By identifying this pattern, we provide clear evidence of TTD's significant role in the damping of strong plasma turbulence. Additionally, we compare the TTD signature with that of Landau damping (LD). Although they both produce a bipolar pattern of phase-space energy density loss and gain about the parallel resonant velocity of the Alfvénic waves, they are mediated by different forces and exhibit different behaviours as the perpendicular velocity$$v_\perp \to 0$$. We also explore how the dominant damping mechanism varies with ion plasma beta$$\beta _i$$, showing that TTD dominates over LD for$$\beta _i > 1$$. This work deepens our understanding of the role of TTD in the damping of weakly collisional plasma turbulence and paves the way to seek the signature of TTD usingin situspacecraft observations of turbulence in space plasmas.
more »
« less
This content will become publicly available on August 1, 2026
The CHIMERAS project: design framework for the Collisionless HIgh-beta Magnetized Experiment Researching Astrophysical Systems
From the near-Earth solar wind to the intracluster medium of galaxy clusters, collisionless, high-beta, magnetized plasmas pervade our universe. Energy and momentum transport from large-scale fields and flows to small-scale motions of plasma particles is ubiquitous in these systems, but a full picture of the underlying physical mechanisms remains elusive. The transfer is often mediated by a turbulent cascade of Alfvénic fluctuations as well as a variety of kinetic instabilities; these processes tend to be multi-scale and/or multi-dimensional, which makes them difficult to study using spacecraft missions and numerical simulations alone. Meanwhile, existing laboratory devices struggle to produce the collisionless, high ion beta ($$\beta _i \gtrsim 1$$), magnetized plasmas across the range of scales necessary to address these problems. As envisioned in recent community planning documents, it is therefore important to build a next generation laboratory facility to create a$$\beta _i \gtrsim 1$$, collisionless, magnetized plasma in the laboratory for the first time. A working group has been formed and is actively defining the necessary technical requirements to move the facility towards a construction-ready state. Recent progress includes the development of target parameters and diagnostic requirements as well as the identification of a need for source-target device geometry. As the working group is already leading to new synergies across the community, we anticipate a broad community of users funded by a variety of federal agencies (including National Aeronautics and Space Administration, Department of Energy and National Science Foundation) to make copious use of the future facility.
more »
« less
- Award ID(s):
- 2401110
- PAR ID:
- 10633064
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Journal of Plasma Physics
- Volume:
- 91
- Issue:
- 4
- ISSN:
- 0022-3778
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Electrophoresis is the motion of a charged colloidal particle in an electrolyte under an applied electric field. The electrophoretic velocity of a spherical particle depends on the dimensionless electric field strength$$\beta =a^*e^*E_\infty ^*/k_B^*T^*$$, defined as the ratio of the product of the applied electric field magnitude$$E_\infty ^*$$and particle radius$$a^*$$, to the thermal voltage$$k_B^*T^*/e^*$$, where$$k_B^*$$is Boltzmann's constant,$$T^*$$is the absolute temperature, and$$e^*$$is the charge on a proton. In this paper, we develop a spectral element algorithm to compute the electrophoretic velocity of a spherical, rigid, dielectric particle, of fixed dimensionless surface charge density$$\sigma$$over a wide range of$$\beta$$. Here,$$\sigma =(e^*a^*/\epsilon ^*k_B^*T^*)\sigma ^*$$, where$$\sigma ^*$$is the dimensional surface charge density, and$$\epsilon ^*$$is the permittivity of the electrolyte. For moderately charged particles ($$\sigma ={O}(1)$$), the electrophoretic velocity is linear in$$\beta$$when$$\beta \ll 1$$, and its dependence on the ratio of the Debye length ($$1/\kappa ^*$$) to particle radius (denoted by$$\delta =1/(\kappa ^*a^*)$$) agrees with Henry's formula. As$$\beta$$increases, the nonlinear contribution to the electrophoretic velocity becomes prominent, and the onset of this behaviour is$$\delta$$-dependent. For$$\beta \gg 1$$, the electrophoretic velocity again becomes linear in field strength, approaching the Hückel limit of electrophoresis in a dielectric medium, for all$$\delta$$. For highly charged particles ($$\sigma \gg 1$$) in the thin-Debye-layer limit ($$\delta \ll 1$$), our computations are in good agreement with recent experimental and asymptotic results.more » « less
-
Abstract This paper will study almost everywhere behaviors of functions on partition spaces of cardinals possessing suitable partition properties. Almost everywhere continuity and monotonicity properties for functions on partition spaces will be established. These results will be applied to distinguish the cardinality of certain subsets of the power set of partition cardinals. The following summarizes the main results proved under suitable partition hypotheses.•If$$\kappa $$is a cardinal,$$\epsilon < \kappa $$,$${\mathrm {cof}}(\epsilon ) = \omega $$,$$\kappa \rightarrow _* (\kappa )^{\epsilon \cdot \epsilon }_2$$and$$\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$$, then$$\Phi $$satisfies the almost everywhere short length continuity property: There is a club$$C \subseteq \kappa $$and a$$\delta < \epsilon $$so that for all$$f,g \in [C]^\epsilon _*$$, if$$f \upharpoonright \delta = g \upharpoonright \delta $$and$$\sup (f) = \sup (g)$$, then$$\Phi (f) = \Phi (g)$$.•If$$\kappa $$is a cardinal,$$\epsilon $$is countable,$$\kappa \rightarrow _* (\kappa )^{\epsilon \cdot \epsilon }_2$$holds and$$\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$$, then$$\Phi $$satisfies the strong almost everywhere short length continuity property: There is a club$$C \subseteq \kappa $$and finitely many ordinals$$\delta _0, ..., \delta _k \leq \epsilon $$so that for all$$f,g \in [C]^\epsilon _*$$, if for all$$0 \leq i \leq k$$,$$\sup (f \upharpoonright \delta _i) = \sup (g \upharpoonright \delta _i)$$, then$$\Phi (f) = \Phi (g)$$.•If$$\kappa $$satisfies$$\kappa \rightarrow _* (\kappa )^\kappa _2$$,$$\epsilon \leq \kappa $$and$$\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$$, then$$\Phi $$satisfies the almost everywhere monotonicity property: There is a club$$C \subseteq \kappa $$so that for all$$f,g \in [C]^\epsilon _*$$, if for all$$\alpha < \epsilon $$,$$f(\alpha ) \leq g(\alpha )$$, then$$\Phi (f) \leq \Phi (g)$$.•Suppose dependent choice ($$\mathsf {DC}$$),$${\omega _1} \rightarrow _* ({\omega _1})^{\omega _1}_2$$and the almost everywhere short length club uniformization principle for$${\omega _1}$$hold. Then every function$$\Phi : [{\omega _1}]^{\omega _1}_* \rightarrow {\omega _1}$$satisfies a finite continuity property with respect to closure points: Let$$\mathfrak {C}_f$$be the club of$$\alpha < {\omega _1}$$so that$$\sup (f \upharpoonright \alpha ) = \alpha $$. There is a club$$C \subseteq {\omega _1}$$and finitely many functions$$\Upsilon _0, ..., \Upsilon _{n - 1} : [C]^{\omega _1}_* \rightarrow {\omega _1}$$so that for all$$f \in [C]^{\omega _1}_*$$, for all$$g \in [C]^{\omega _1}_*$$, if$$\mathfrak {C}_g = \mathfrak {C}_f$$and for all$$i < n$$,$$\sup (g \upharpoonright \Upsilon _i(f)) = \sup (f \upharpoonright \Upsilon _i(f))$$, then$$\Phi (g) = \Phi (f)$$.•Suppose$$\kappa $$satisfies$$\kappa \rightarrow _* (\kappa )^\epsilon _2$$for all$$\epsilon < \kappa $$. For all$$\chi < \kappa $$,$$[\kappa ]^{<\kappa }$$does not inject into$${}^\chi \mathrm {ON}$$, the class of$$\chi $$-length sequences of ordinals, and therefore,$$|[\kappa ]^\chi | < |[\kappa ]^{<\kappa }|$$. As a consequence, under the axiom of determinacy$$(\mathsf {AD})$$, these two cardinality results hold when$$\kappa $$is one of the following weak or strong partition cardinals of determinacy:$${\omega _1}$$,$$\omega _2$$,$$\boldsymbol {\delta }_n^1$$(for all$$1 \leq n < \omega $$) and$$\boldsymbol {\delta }^2_1$$(assuming in addition$$\mathsf {DC}_{\mathbb {R}}$$).more » « less
-
Abstract Given a family$$\mathcal{F}$$of bipartite graphs, theZarankiewicz number$$z(m,n,\mathcal{F})$$is the maximum number of edges in an$$m$$by$$n$$bipartite graph$$G$$that does not contain any member of$$\mathcal{F}$$as a subgraph (such$$G$$is called$$\mathcal{F}$$-free). For$$1\leq \beta \lt \alpha \lt 2$$, a family$$\mathcal{F}$$of bipartite graphs is$$(\alpha,\beta )$$-smoothif for some$$\rho \gt 0$$and every$$m\leq n$$,$$z(m,n,\mathcal{F})=\rho m n^{\alpha -1}+O(n^\beta )$$. Motivated by their work on a conjecture of Erdős and Simonovits on compactness and a classic result of Andrásfai, Erdős and Sós, Allen, Keevash, Sudakov and Verstraëte proved that for any$$(\alpha,\beta )$$-smooth family$$\mathcal{F}$$, there exists$$k_0$$such that for all odd$$k\geq k_0$$and sufficiently large$$n$$, any$$n$$-vertex$$\mathcal{F}\cup \{C_k\}$$-free graph with minimum degree at least$$\rho (\frac{2n}{5}+o(n))^{\alpha -1}$$is bipartite. In this paper, we strengthen their result by showing that for every real$$\delta \gt 0$$, there exists$$k_0$$such that for all odd$$k\geq k_0$$and sufficiently large$$n$$, any$$n$$-vertex$$\mathcal{F}\cup \{C_k\}$$-free graph with minimum degree at least$$\delta n^{\alpha -1}$$is bipartite. Furthermore, our result holds under a more relaxed notion of smoothness, which include the families$$\mathcal{F}$$consisting of the single graph$$K_{s,t}$$when$$t\gg s$$. We also prove an analogous result for$$C_{2\ell }$$-free graphs for every$$\ell \geq 2$$, which complements a result of Keevash, Sudakov and Verstraëte.more » « less
-
Abstract Let$$\Sigma$$be an alphabet and$$\mu$$be a distribution on$$\Sigma ^k$$for some$$k \geqslant 2$$. Let$$\alpha \gt 0$$be the minimum probability of a tuple in the support of$$\mu$$(denoted$$\mathsf{supp}(\mu )$$). We treat the parameters$$\Sigma , k, \mu , \alpha$$as fixed and constant. We say that the distribution$$\mu$$has a linear embedding if there exist an Abelian group$$G$$(with the identity element$$0_G$$) and mappings$$\sigma _i : \Sigma \rightarrow G$$,$$1 \leqslant i \leqslant k$$, such that at least one of the mappings is non-constant and for every$$(a_1, a_2, \ldots , a_k)\in \mathsf{supp}(\mu )$$,$$\sum _{i=1}^k \sigma _i(a_i) = 0_G$$. In [Bhangale-Khot-Minzer, STOC 2022], the authors asked the following analytical question. Let$$f_i: \Sigma ^n\rightarrow [\!-1,1]$$be bounded functions, such that at least one of the functions$$f_i$$essentially has degree at least$$d$$, meaning that the Fourier mass of$$f_i$$on terms of degree less than$$d$$is at most$$\delta$$. If$$\mu$$has no linear embedding (over any Abelian group), then is it necessarily the case that\begin{equation*}\left | \mathop {\mathbb{E}}_{({\textbf {x}}_1, {\textbf {x}}_2, \ldots , {\textbf {x}}_k)\sim \mu ^{\otimes n}}[f_1({\textbf {x}}_1)f_2({\textbf {x}}_2)\cdots f_k({\textbf {x}}_k)] \right | = o_{d, \delta }(1),\end{equation*}where the right hand side$$\to 0$$as the degree$$d \to \infty$$and$$\delta \to 0$$? In this paper, we answer this analytical question fully and in the affirmative for$$k=3$$. We also show the following two applications of the result.1.The first application is related to hardness of approximation. Using the reduction from [5], we show that for every$$3$$-ary predicate$$P:\Sigma ^3 \to \{0,1\}$$such that$$P$$has no linear embedding, anSDP (semi-definite programming) integrality gap instanceof a$$P$$-Constraint Satisfaction Problem (CSP) instance with gap$$(1,s)$$can be translated into a dictatorship test with completeness$$1$$and soundness$$s+o(1)$$, under certain additional conditions on the instance.2.The second application is related to additive combinatorics. We show that if the distribution$$\mu$$on$$\Sigma ^3$$has no linear embedding, marginals of$$\mu$$are uniform on$$\Sigma$$, and$$(a,a,a)\in \texttt{supp}(\mu )$$for every$$a\in \Sigma$$, then every large enough subset of$$\Sigma ^n$$contains a triple$$({\textbf {x}}_1, {\textbf {x}}_2,{\textbf {x}}_3)$$from$$\mu ^{\otimes n}$$(and in fact a significant density of such triples).more » « less
An official website of the United States government
