Catechol-modified bioadhesives generate hydrogen peroxide (H2O2) during the process of curing. A robust design experiment was utilized to tune the H2O2 release profile and adhesive performance of a catechol-modified polyethylene glycol (PEG) containing silica particles (SiP). An L9 orthogonal array was used to determine the relative contributions of four factors (the PEG architecture, PEG concentration, phosphate-buffered saline (PBS) concentration, and SiP concentration) at three factor levels to the performance of the composite adhesive. The PEG architecture and SiP wt% contributed the most to the variation in the results associated with the H2O2 release profile, as both factors affected the crosslinking of the adhesive matrix and SiP actively degraded the H2O2. The predicted values from this robust design experiment were used to select the adhesive formulations that released 40–80 µM of H2O2 and evaluate their ability to promote wound healing in a full-thickness murine dermal wound model. The treatment with the composite adhesive drastically increased the rate of the wound healing when compared to the untreated controls, while minimizing the epidermal hyperplasia. The release of H2O2 from the catechol and soluble silica from the SiP contributed to the recruitment of keratinocytes to the wound site and effectively promoted the wound healing.
more »
« less
This content will become publicly available on March 20, 2026
Accelerated dermal wound healing in diabetic mice by a H 2 O 2 -generating catechol-functionalized gelatin microgel
Physically crosslinked gelatin microgels were functionalized with a bioadhesive molecule, catechol, to study the effect of in situ generated H2O2 on full-thickness wound repair in diabetic mice. Due to the physically crosslinked nature of the microgels, they transition into a hydrogel film upon hydration. The formation of a hydrogel film was confirmed by the changes in their morphology and viscoelastic properties. Additionally, these microgels released up to 86 μM of H2O2 as a result of catechol autoxidation. The generated H2O2 completely eradicated Staphylococcus epidermidis with an initial concentration of 103 CFU mL−1. These microgels were not cytotoxic and promoted VEGF upregulation in immortalized human keratinocytes (HaCaT) in vitro. When the microgels were applied to a full-thickness dermal wound in diabetic mice, dermal wound closure was accelerated over 14 days, achieving a wound closure of 90% based on the wound area. Microgel-treated wounds also resulted in complete re-epithelialization and regeneration of new dermal tissues with morphology and structure resembling those of native tissues. These results indicate that the release of micromolar concentrations of H2O2 can accelerate wound healing in a healing-impaired animal.
more »
« less
- PAR ID:
- 10633321
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Journal of Materials Chemistry B
- Volume:
- 13
- Issue:
- 12
- ISSN:
- 2050-750X
- Page Range / eLocation ID:
- 3967 to 3979
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The inflammasome is a multiprotein complex critical for the innate immune response to injury. Inflammasome activation initiates healthy wound healing, but comorbidities with poor healing, including diabetes, exhibit pathologic, sustained activation with delayed resolution that prevents healing progression. In prior work, we reported the allosteric P2X7 antagonist A438079 inhibits extracellular ATP-evoked NLRP3 signaling by preventing ion flux, mitochondrial reactive oxygen species generation, NLRP3 assembly, mature IL-1β release, and pyroptosis. However, the short half-lifein vivolimits clinical translation of this promising molecule. Here, we develop a controlled release scaffold to deliver A438079 as an inflammasome-modulating wound dressing for applications in poorly healing wounds. We fabricated and characterized tunable thickness, long-lasting silk fibroin dressings and evaluated A438079 loading and release kinetics. We characterized A438079-loaded silk dressingsin vitroby measuring IL-1β release and inflammasome assembly by perinuclear ASC speck formation. We further evaluated the performance of A438079-loaded silk dressings in a full-thickness model of wound healing in genetically diabetic mice and observed acceleration of wound closure by 10 days post-wounding with reduced levels of IL-1β at the wound edge. This work provides a proof-of-principle for translating pharmacologic inhibition of ATP-induced inflammation in diabetic wounds and represents a novel approach to therapeutically targeting a dysregulated mechanism in diabetic wound impairment.more » « less
-
Abstract Platelets crucially facilitate wound healing but can become depleted in traumatic injury or chronic wounds. Previously, our group developed injectable platelet‐like particles (PLPs) comprised of highly deformable, ultralow crosslinked pNIPAm microgels (ULCs) coupled to fibrin binding antibodies to treat post‐trauma bleeding. PLP fibrin‐binding facilitates homing to sites of injury, promotes clot formation, and, due to high particle deformability, induces clot retraction. Clot retraction augments healing by increasing clot stability, enhancing clot stiffness, and promoting cell migration into the wound bed. Because post‐traumatic healing is often complicated by infection, the objective of these studies was to develop antimicrobial nanosilver microgel composite PLPs to augment hemostasis, fight infection, and promote healing post‐trauma. A key goal was to maintain particle deformability following silver incorporation to preserve PLP‐mediated clot retraction. Clot retraction, antimicrobial activity, hemostasis after trauma, and healing after injury were evaluated via confocal microscopy, colony‐forming unit assays, a murine liver trauma model, and a murine full‐thickness injury model in the absence or presence of infection, respectively. We found that nanosilver incorporation does not affect base PLP performance while bestowing significant antimicrobial activity and enhancing infected wound healing outcomes. Therefore, Ag‐PLPs have great promise for treating hemorrhage and improving healing following trauma.more » « less
-
Abstract Chronic wounds are one of the most devastating complications of diabetes and are the leading cause of nontraumatic limb amputation. Despite the progress in identifying factors and promising in vitro results for the treatment of chronic wounds, their clinical translation is limited. Given the range of disruptive processes necessary for wound healing, different pharmacological agents are needed at different stages of tissue regeneration. This requires the development of wearable devices that can deliver agents to critical layers of the wound bed in a minimally invasive fashion. Here, for the first time, a programmable platform is engineered that is capable of actively delivering a variety of drugs with independent temporal profiles through miniaturized needles into deeper layers of the wound bed. The delivery of vascular endothelial growth factor (VEGF) through the miniaturized needle arrays demonstrates that, in addition to the selection of suitable therapeutics, the delivery method and their spatial distribution within the wound bed is equally important. Administration of VEGF to chronic dermal wounds of diabetic mice using the programmable platform shows a significant increase in wound closure, re‐epithelialization, angiogenesis, and hair growth when compared to standard topical delivery of therapeutics.more » « less
-
Wound healing presents a unique challenge for patients with diabetes. Gas therapies have gained significant attention in the wound-healing community. Carbon monoxide (CO) is a small molecule that is well known for its immune-modulating properties when administered at sublethal concentrations. CO is currently in clinical trials for lung disease, sickle cell anemia, and organ transplantation. Here, we investigated the effects of CO in an in vitro wound-healing model and subsequently developed and tested CO gas-entrapping materials (CO-GEMs) for topical application on wounds to promote healing. In this study, we report the efficacy of CO-GEMs in treating full-thickness wounds and pressure ulcers in diabetic mouse models. Collectively, our findings demonstrate that these novel gas entrapping materials could serve as an alternative therapy to both protect the wound bed and promote healing and replace bulky hyperbaric chambers, standard gauze wound dressings, or expensive skin grafts.more » « less
An official website of the United States government
