Distributed multi-target tracking is a canonical task for multi-robot systems, encompassing applications from environmental monitoring to disaster response to surveillance. In many situations, the distribution of unknown objects in a search area is irregular, with objects are likely to distribute in clusters instead of evenly distributed. In this paper, we develop a novel distributed multi-robot multi-target tracking algorithm for effectively tracking clustered targets from noisy measurements. Our algorithm contains two major components. Firstly, both the instantaneous and cumulative target density are estimated, providing the best guess of current target states and long-term coarse distribution of clusters, respectively. Secondly, the power diagram is implemented in Lloyd’s algorithm to optimize task space assignment for each robot to trade-off between tracking detected targets in clusters and searching for potential targets outside clusters. We demonstrate the efficacy of our proposed method and show that our method outperforms of other candidates in tracking accuracy through a set of simulations.
more »
« less
This content will become publicly available on July 1, 2026
Distributed Monitoring of Moving Thermal Targets Using Unmanned Aerial Vehicles and Gaussian Mixture Models
This paper contributes a two-step approach to monitor clusters of thermal targets on the ground using unmanned aerial vehicles (UAVs) and Gaussian mixture models (GMMs) in a distributed manner. The approach is tailored to networks of UAVs that establish a flying ad hoc network (FANET) and operate without central command. The first step is a monitoring algorithm that determines if the GMM corresponds to the current spatial distribution of clusters of thermal targets on the ground. UAVs make this determination using local data and a sequence of data exchanges with UAVs that are one-hop neighbors in the FANET. The second step is the calculation of a new GMM when the current GMM is found to be unfit, i.e., the GMM no longer corresponds to the new distribution of clusters on the ground due to the movement of thermal targets. A distributed expectation-maximization algorithm is developed for this purpose, and it operates on local data and data exchanged with one-hop neighbors only. Simulation results evaluate the performance of both algorithms in terms of the number of communication exchanges. This evaluation is completed for an increasing number of clusters of thermal targets and an increasing number of UAVs. The performance is compared with well-known solutions to the monitoring and GMM calculation problems, demonstrating convergence with a lower number of communication exchanges.
more »
« less
- Award ID(s):
- 2301707
- PAR ID:
- 10633328
- Publisher / Repository:
- Multidisciplinary Digital Publishing Institute (MDPI)
- Date Published:
- Journal Name:
- Robotics
- Volume:
- 14
- Issue:
- 7
- ISSN:
- 2218-6581
- Page Range / eLocation ID:
- 85
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we develop a distributed mechanism for spectrum sharing among a network of unmanned aerial vehicles (UAV) and licensed terrestrial networks. This method can provide a practical solution for situations where the UAV network may need external spectrum when dealing with congested spectrum or need to change its operational frequency due to security threats. Here we study a scenario where the UAV network performs a remote sensing mission. In this model, the UAVs are categorized to two clusters of relaying and sensing UAVs. The relay UAVs provide a relaying service for a licensed network to obtain spectrum access for the rest of UAVs that perform the sensing task. We develop a distributed mechanism in which the UAVs locally decide whether they need to participate in relaying or sensing considering the fact that communications among UAVs may not be feasible or reliable. The UAVs learn the optimal task allocation using a distributed reinforcement learning algorithm. Convergence of the algorithm is discussed and simulation results are presented for different scenarios to verify the convergence.more » « less
-
The K-nearest neighbors is a basic problem in machine learning with numerous applications. In this problem, given a (training) set of n data points with labels and a query point q, we want to assign a label to q based on the labels of the K-nearest points to the query. We study this problem in the k-machine model, a model for distributed large-scale data. In this model, we assume that the n points are distributed (in a balanced fashion) among the k machines and the goal is to compute an answer given a query point to a machine using a small number of communication rounds. Our main result is a randomized algorithm in the k-machine model that runs in O(log K) communication rounds with high success probability (regardless of the number of machines k and the number of points n). The message complexity of the algorithm is small taking only O(k log K) messages. Our bounds are essentially the best possible for comparison-based algorithms. We also implemented our algorithm and show that it performs well in practice.more » « less
-
null (Ed.)Efficient arrangement of UAVs in a swarm formation is essential to the functioning of the swarm as a temporary communication network. Such a network could assist in search and rescue efforts by providing first responders with a means of communication. We propose a user-friendly and effective system for calculating and visualizing an optimal layout of UAVs. An initial calculation to gather parameter information is followed by the proposed algorithm that generates an optimal solution. A visualization is displayed in an easy-to-comprehend manner after the proposed iterative genetic algorithm finds an optimal solution. The proposed system runs iteratively, adding UAV at each intermediate conclusion, until a solution is found. Information is passed between runs of the iterative genetic algorithm to reduce runtime and complexity. The results from testing show that the proposed algorithm yields optimal solutions more frequently than the k-means clustering algorithm. This system finds an optimal solution 80% of the time while k-means clustering is unable to find a solution when presented with a complex problem.more » « less
-
While there has been significant progress on statistical theories in the information community, there is a lack of studies in information-theoretic distributed resource allocation to maximize information gain. With advanced technologies of unmanned aerial vehicles (UAVs) in response to corresponding revised FAA regulations, this study focuses on developing a new framework for utilizing UAVs in incident management. As a result of new computing technologies, predictive decision-making studies have recently improved ERV allocations for a sequence of incidents; however, these ground-based operations do not simultaneously capture network-wide information. This study incorporates a real-time aerial view using UAVs with three key improvements. First, aerial observations update the status of the freeway shoulder, allowing an ERV to safely travel at full speed. Second, observing parameters of the congestion shockwave provides accurate measurements of the true impact of an incident. Third, real-time information can be gathered on the clearance progress of an incident scene. We automate UAV and ERV allocation while satisfying constraints between these vehicles using a distributed constraint optimization problem (DCOP) framework. To find the optimal assignment of vehicles, the proposed model is formulated and solved using the Max-Sum approach. The system utility convergence is presented for different scenarios of grid size, number of incidents, and number of vehicles. We also present the solution of our model using the Distributed Stochastic Algorithm (DSA). DSA with exploration heuristics outperformed the Max-Sum algorithm when probability threshold p=0.5 but degrades for higher values of p.more » « less
An official website of the United States government
