Abstract In this paper we describe the long‐time behavior of the non‐cutoff Boltzmann equation with soft potentials near a global Maxwellian background on the whole space in the weakly collisional limit (that is, infinite Knudsen number ). Specifically, we prove that for initial data sufficiently small (independent of the Knudsen number), the solution displays several dynamics caused by the phase mixing/dispersive effects of the transport operator and its interplay with the singular collision operator. For ‐wavenumbers with , one sees anenhanced dissipationeffect wherein the characteristic decay time‐scale is accelerated to , where is the singularity of the kernel ( being the Landau collision operator, which is also included in our analysis); for , one seesTaylor dispersion, wherein the decay time‐scale is accelerated to . Additionally, we prove almost uniform phase mixing estimates. For macroscopic quantities such as the density , these bounds imply almost uniform‐in‐ decay of in due to phase mixing and dispersive decay.
more »
« less
This content will become publicly available on August 2, 2026
Fast spectral separation method for kinetic equation with anisotropic non-stationary collision operator retaining micro-model fidelity
In this paper, we present a generalized, data-driven collisional operator for one-component plasmas, learned from molecular dynamics simulations, to extend the collisional kinetic model beyond the weakly coupled regime. The proposed operator features an anisotropic, non-stationary collision kernel that accounts for particle correlations typically neglected in classical Landau formulations. To enable efficient numerical evaluation, we develop a fast spectral separation method that represents the kernel as a low-rank tensor product of univariate basis functions. This formulation admits an O(N log N) algorithm via fast Fourier transforms and preserves key physical properties, including discrete conservation laws and the H-theorem, through a structure-preserving central difference discretization. Numerical experiments demonstrate that the proposed model accurately captures plasma dynamics in the moderately coupled regime beyond the standard Landau model while maintaining high computational efficiency and structure-preserving properties.
more »
« less
- Award ID(s):
- 2110981
- PAR ID:
- 10633351
- Publisher / Repository:
- arxiv
- Date Published:
- Journal Name:
- arXivorg
- ISSN:
- 2331-8422
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Several generalizations of the well-known fluid model of Braginskii (1965) are considered. We use the Landau collisional operator and the moment method of Grad. We focus on the 21-moment model that is analogous to the Braginskii model, and we also consider a 22-moment model. Both models are formulated for general multispecies plasmas with arbitrary masses and temperatures, where all of the fluid moments are described by their evolution equations. The 21-moment model contains two “heat flux vectors” (third- and fifth-order moments) and two “viscosity tensors” (second- and fourth-order moments). The Braginskii model is then obtained as a particular case of a one ion–electron plasma with similar temperatures, with decoupled heat fluxes and viscosity tensors expressed in a quasistatic approximation. We provide all of the numerical values of the Braginskii model in a fully analytic form (together with the fourth- and fifth-order moments). For multispecies plasmas, the model makes the calculation of the transport coefficients straightforward. Formulation in fluid moments (instead of Hermite moments) is also suitable for implementation into existing numerical codes. It is emphasized that it is the quasistatic approximation that makes some Braginskii coefficients divergent in a weakly collisional regime. Importantly, we show that the heat fluxes and viscosity tensors are coupled even in the linear approximation, and that the fully contracted (scalar) perturbations of the fourth-order moment, which are accounted for in the 22-moment model, modify the energy exchange rates. We also provide several appendices, which can be useful as a guide for deriving the Braginskii model with the moment method of Grad.more » « less
-
Motivated by the open problem of large-data global existence for the non-cutoff Boltzmann equation, we introduce a model equation that in some sense disregards the anisotropy of the Boltzmann collision kernel. We refer to this model equation as isotropic Boltzmann by analogy with the isotropic Landau equation introduced by Krieger and Strain (2012) [35]. The collision operator of our isotropic Boltzmann model converges to the isotropic Landau collision operator under a scaling limit that is analogous to the grazing collisions limit connecting (true) Boltzmann with (true) Landau. Our main result is global existence for the isotropic Boltzmann equation in the space homogeneous case, for certain parts of the “very soft potentials” regime in which global existence is unknown for the space homogeneous Boltzmann equation. The proof strategy is inspired by the work of Gualdani and Guillen (2022) [22] on isotropic Landau, and makes use of recent progress on weighted fractional Hardy inequalities.more » « less
-
The thermal radiative transfer (TRT) equations form an integro-differential system that describes the propagation and collisional interactions of photons. Computing accurate and efficient numerical solutions TRT are challenging for several reasons, the first of which is that TRT is defined on a high-dimensional phase space that includes the independent variables of time, space, and velocity. In order to reduce the dimensionality of the phase space, classical approaches such as the P$$_N$$ (spherical harmonics) or the S$$_N$$ (discrete ordinates) ansatz are often used in the literature. In this work, we introduce a novel approach: the hybrid discrete (H$$^T_N$$) approximation to the radiative thermal transfer equations. This approach acquires desirable properties of both P$$_N$$ and S$$_N$$, and indeed reduces to each of these approximations in various limits: H$$^1_N$$ $$\equiv$$ P$$_N$$ and H$$^T_0$$ $$\equiv$$ S$$_T$$. We prove that H$$^T_N$$ results in a system of hyperbolic partial differential equations for all $$T\ge 1$$ and $$N\ge 0$$. Another challenge in solving the TRT system is the inherent stiffness due to the large timescale separation between propagation and collisions, especially in the diffusive (i.e., highly collisional) regime. This stiffness challenge can be partially overcome via implicit time integration, although fully implicit methods may become computationally expensive due to the strong nonlinearity and system size. On the other hand, explicit time-stepping schemes that are not also asymptotic-preserving in the highly collisional limit require resolving the mean-free path between collisions, making such schemes prohibitively expensive. In this work we develop a numerical method that is based on a nodal discontinuous Galerkin discretization in space, coupled with a semi-implicit discretization in time. In particular, we make use of a second order explicit Runge-Kutta scheme for the streaming term and an implicit Euler scheme for the material coupling term. Furthermore, in order to solve the material energy equation implicitly after each predictor and corrector step, we linearize the temperature term using a Taylor expansion; this avoids the need for an iterative procedure, and therefore improves efficiency. In order to reduce unphysical oscillation, we apply a slope limiter after each time step. Finally, we conduct several numerical experiments to verify the accuracy, efficiency, and robustness of the H$$^T_N$$ ansatz and the numerical discretizations.more » « less
-
Supervised operator learning centers on the use of training data, in the form of input-output pairs, to estimate maps between infinite-dimensional spaces. It is emerging as apowerful tool to complement traditional scientific computing, which may often be framedin terms of operators mapping between spaces of functions. Building on the classical ran-dom features methodology for scalar regression, this paper introduces the function-valuedrandom features method. This leads to a supervised operator learning architecture thatis practical for nonlinear problems yet is structured enough to facilitate efficient trainingthrough the optimization of a convex, quadratic cost. Due to the quadratic structure, thetrained model is equipped with convergence guarantees and error and complexity bounds,properties that are not readily available for most other operator learning architectures. Atits core, the proposed approach builds a linear combination of random operators. Thisturns out to be a low-rank approximation of an operator-valued kernel ridge regression al-gorithm, and hence the method also has strong connections to Gaussian process regression.The paper designs function-valued random features that are tailored to the structure oftwo nonlinear operator learning benchmark problems arising from parametric partial differ-ential equations. Numerical results demonstrate the scalability, discretization invariance,and transferability of the function-valued random features method.more » « less
An official website of the United States government
