Abstract Standardizing the definition of eccentricity is necessary for unambiguous inference of the orbital eccentricity of compact binaries from gravitational wave observations. In previous works, we proposed a definition of eccentricity for systems without spin-precession that relies solely on the gravitational waveform, is applicable to any waveform model, and has the correct Newtonian limit. In this work, we extend this definition to spin-precessing systems. This simple yet effective extension relies on first transforming the waveform from the inertial frame to the coprecessing frame, and then adopting an amplitude and a phase with reduced spin-induced effects. Our method includes a robust procedure for filtering out spin-induced modulations, which become non-negligible in the small eccentricity and large spin-precession regime. Finally, we apply our method to a set of Numerical Relativity and Effective One Body waveforms to showcase its robustness for generic eccentric spin-precessing binaries. We make our method public via Python implementation ingw_eccentricity.
more »
« less
This content will become publicly available on August 1, 2026
Evolution of precessing binary black holes on eccentric orbits using orbit-averaged evolution equations
The most general bound binary black hole system has an eccentric orbit and precessing spins. The detection of such a system with significant eccentricity close to the merger would be a clear signature of dynamical formation. In order to study such systems, it is important to be able to evolve their spins and eccentricity from the larger separations at which the binary formed to the smaller separations at which it is detected, or vice versa. Knowledge of the precessional evolution of the binary’s orbital angular momentum can also be used to twist up aligned-spin eccentric waveform models to create a spin-precessing eccentric waveform model. In this paper, we present a new publicly available code to evolve eccentric, precessing binary black holes using orbit-averaged post-Newtonian (PN) equations from the literature. The spin-precession dynamics is 2PN accurate, i.e., with the leading spin-orbit and spin-spin corrections. The evolution of orbital parameters (orbital frequency, eccentricity, and periastron precession), which follow the quasi-Keplerian parametrization, is 3PN accurate in the point particle terms and includes the leading order spin-orbit and spin-spin effects. All the spin-spin terms include the quadrupole-monopole interaction. The eccentricity enhancement functions in the fluxes use the high-accuracy hyperasymptotic expansions from Loutrel and Yunes []. We discuss various features of the code and study the evolution of the orbital and spin-precession parameters of eccentric, precessing binary black holes. In particular, we study the dependence of the spin morphologies on eccentricity, where we find that the transition point from one spin morphology to another can depend nonmonotonically on eccentricity, and the fraction of binaries in a given morphology at a given point in the evolution of a population depends on the instantaneous eccentricity.
more »
« less
- PAR ID:
- 10633456
- Publisher / Repository:
- Physical Review D
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 112
- Issue:
- 4
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Binary black holes with misaligned spins will generically induce both precession and nutation of the orbital angular momentum 𝐋 about the total angular momentum 𝐉. These phenomena modulate the phase and amplitude of the gravitational waves emitted as the binary inspirals to merger. We introduce a “taxonomy” of binary black-hole spin precession that encompasses all the known phenomenology, then present five new phenomenological parameters that describe generic precession and constitute potential building blocks for future gravitational waveform models. These are the precession amplitude ⟨𝜃𝐿⟩, the precession frequency ⟨Ω𝐿⟩, the nutation amplitude Δ𝜃𝐿, the nutation frequency 𝜔, and the precession-frequency variation ΔΩ𝐿. We investigate the evolution of these five parameters during the inspiral and explore their statistical properties for sources with isotropic spins. In particular, we find that nutation of 𝐋 is most prominent for binaries with high spins (𝜒≳0.5) and moderate mass ratios (𝑞∼0.6).more » « less
-
The measurement of orbital eccentricity in gravitational-wave (GW) signals will provide unique insights into the astrophysical origin of binary systems, while ignoring eccentricity in waveform models could introduce significant biases in parameter estimation and tests of general relativity. Upcoming LIGO-Virgo-KAGRA observing runs are expected to detect a subpopulation of eccentric signals, making it vital to develop accurate waveform models for eccentric orbits. Here, employing recent analytical results through the third post-Newtonian order, we develop v5: a new time-domain, effective-one-body, multipolar waveform model for eccentric binary black holes with spins aligned (or antialigned) with the orbital angular momentum. Besides the dominant (2, 2) mode, the model includes the (2, 1), (3, 3), (3, 2), (4, 4), and (4, 3) modes. We validate the model’s accuracy by computing its unfaithfulness against 99 (28 public and 71 private) eccentric numerical-relativity (NR) simulations, produced by the Simulating eXtreme Spacetimes Collaboration. Importantly, for NR waveforms with initial GW eccentricities below 0.5, the maximum (2, 2)-mode unfaithfulness across the total mass range is consistently below or close to 1%, with a median value of , reflecting an accuracy improvement of approximately an order of magnitude compared to the previous-generation v4 and the state-of-the-art esumalí eccentric model. In the quasi-circular-orbit limit, v5 is in excellent agreement with the highly accurate v5 model. The accuracy, robustness, and speed of v5 make it suitable for data analysis and astrophysical studies. We demonstrate this by performing a set of recovery studies of synthetic NR-signal injections, and parameter-estimation analyses of the events GW150914 and GW190521, which we find to have no eccentricity signatures.more » « less
-
The inspiral-merger-ringdown (IMR) consistency test checks the consistency of the final mass and final spin of a binary black hole merger remnant, independently inferred via the inspiral and merger-ringdown parts of the waveform. As binaries are expected to be nearly circularized when entering the frequency band of ground-based detectors, tests of general relativity (GR) currently employ quasicircular waveforms. We quantify the effect of residual orbital eccentricity on the IMR consistency test. We find that eccentricity causes a significant systematic bias in the inferred final mass and spin of the remnant black hole at an orbital eccentricity (defined at 10 Hz) of e0≳0.1 in the LIGO band (for a total binary mass in the range 65-200M⊙). For binary black holes observed by Cosmic Explorer (CE), the systematic bias becomes significant for e0≳0.015 (for 200-600M⊙ systems). This eccentricity-induced bias on the final mass and spin leads to an apparent inconsistency in the IMR consistency test, manifesting as a false violation of GR. Hence, eccentric corrections to waveform models are important for constructing a robust test of GR, especially for third-generation detectors. We also estimate the eccentric corrections to the relationship between the inspiral parameters and the final mass and final spin; they are shown to be quite small.more » « less
-
Abstract We present a major update to the Simulating eXtreme Spacetimes (SXS) Collaboration’s catalog of binary black hole simulations. Using highly efficient spectral methods implemented in the Spectral Einstein Code (SpEC), we have nearly doubled the total number of binary configurations from 2,018 to 3,756. The catalog now more densely covers the parameter space with precessing simulations up to mass ratio q = 8 and dimensionless spins up to |χ⃗| ≤ 0.8 with near-zero eccentricity. The catalog also includes some simulations at higher mass ratios with moderate spin and more than 250 eccentric simulations. We have also deprecated and rerun some simulations from our previous catalog (e.g., simulations run with a much older version of SpEC or that had anomalously high errors in the waveform). The median waveform difference (which is similar to the mismatch) between resolutions over the simulations in the catalog is 4 × 10−4. The simulations have a median of 22 orbits, while the longest simulation has 148 orbits. We have corrected each waveform in the catalog to be in the binary’s center-of-mass frame and exhibit gravitational-wave memory. We estimate the total CPU cost of all simulations in the catalog to be 480,000,000 core-hours. We find that using spectral methods for binary black hole simulations is over 1,000 times more efficient than previously published finite-difference simulations. The full catalog is publicly available through the sxs Python package and at https://data.black-holes.org .more » « less
An official website of the United States government
