skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 22, 2026

Title: Variation in responses to temperature across admixed genotypes of Populus trichocarpa × P. balsamifera predict geographic shifts in regions where hybrids are favored
Abstract In a rapidly changing environment, predicting changes in the growth and survival of local populations can inform conservation and management. Plastic responses vary as a result of genetic differentiation within and among species, so accurate rangewide predictions require characterization of genotype-specific reaction norms across the continuum of historic and future climate conditions comprising a species’ range. Natural hybrid zones can give rise to novel recombinant genotypes associated with high phenotypic variability, further increasing the variance of plastic responses within the ranges of the hybridizing species. Experiments that plant replicated genotypes across a range of environments can characterize genotype-specific reaction norms; identify genetic, geographic, and climatic factors affecting variation in climate responses; and make predictions of climate responses across complex genetic and geographic landscapes. The North American hybrid zone ofPopulus trichocarpaandP. balsamiferarepresents a natural system in which reaction norms are likely to vary with underlying genetic variation that has been shaped by climate, geography, and introgression. Here, we leverage a dataset containing 45 clonal genotypes of varying ancestry from this natural hybrid zone, planted across 17 replicated common garden experiments spanning a broad climatic range, including sites warmer than the natural species ranges. Growth and mortality were measured over two years, enabling us to model reaction norms for each genotype across these tested environments. Genomic variation associated with species ancestry and northern/southern regions significantly influenced growth across environments, with genotypic variation in reaction norms reflecting a trade-off between cold tolerance and growth. Using modeled reaction norms for each genotype, we predicted that genotypes with moreP. trichocarpaancestry may gain an advantage under warmer climates. Spatial shifts of the hybrid zone could facilitate the spread of beneficial alleles into novel climates. These results highlight that genotypic variation in responses to temperature will have landscape-level effects.  more » « less
Award ID(s):
1856450
PAR ID:
10633511
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Plastic responses of plants to their environment vary as a result of genetic differentiation within and among species. To accurately predict rangewide responses to climate change, it is necessary to characterize genotype‐specific reaction norms across the continuum of historic and future climate conditions comprising a species' range.The North American hybrid zone ofPopulus trichocarpaandPopulus balsamiferarepresents a natural system that has been shaped by climate, geography, and introgression. We leverage a dataset containing 44 clonal genotypes from this natural hybrid zone, planted across 17 replicated common garden experiments spanning a broad climatic range. Growth and mortality were measured over 2 yr, enabling us to model reaction norms for each genotype across these tested environments.Species ancestry and intraspecific genomic variation significantly influenced growth across environments, with genotypic variation in reaction norms reflecting a trade‐off between cold tolerance and growth. Using modeled reaction norms for each genotype, we predicted that genotypes with moreP. trichocarpaancestry may gain an advantage under warmer climates.Spatial shifts of the hybrid zone could facilitate the spread of beneficial alleles into novel climates. These results highlight that genotypic variation in responses to temperature will have landscape‐level effects. 
    more » « less
  2. Abstract Plants respond to their environment with both short‐term, within‐generation trait plasticity, and long‐term, between‐generation evolutionary changes. However, the relative magnitude of plant responses to short‐ and long‐term changes in the environment remains poorly understood. Shifts in phenological traits can serve as harbingers for responses to environmental change, and both a plant's current and source (i.e., genotype origin) environment can affect plant phenology via plasticity and local adaptation, respectively. To assess the role of current and source environments in explaining variation in flowering phenology ofBromus tectorum, an invasive annual grass, we conducted a replicated common garden experiment using 92 genotypes collected across western North America. Replicates of each genotype were planted in two densities (low = 100 seeds/1 m2, high = 100 seeds/0.04 m2) under two different temperature treatments (low = white gravel; high = black gravel; 2.1°C average difference) in a factorial design, replicated across four common garden locations in Idaho and Wyoming, USA. We tested for the effect of current environment (i.e., density treatment, temperature treatment, and common garden location), source environment (i.e., genotype source climate), and their interaction on each plant's flowering phenology. Flowering timing was strongly influenced by a plant's current environment, with plants that experienced warmer current climates and higher densities flowering earlier than those that experienced cooler current climates and lower densities. Genotypes from hot and dry source climates flowered consistently earlier than those from cool and wet source climates, even after accounting for genotype relatedness, suggesting that this genetically based climate cline is a product of natural selection. We found minimal evidence of interactions between current and source environments or genotype‐by‐environment interactions. Phenology was more sensitive to variation in the current climate than to variation in source climate. These results indicate that cheatgrass phenology reflects high levels of plasticity as well as rapid local adaptation. Both processes likely contribute to its current success as a biological invader and its capacity to respond to future environmental change. 
    more » « less
  3. Abstract Co-adaptation of cytoplasmic and nuclear genomes are critical to physiological function for many species. Despite this understanding, hybridization can disrupt co-adaptation leading to a mismatch between maternally-inherited cytoplasmic genomes and biparentally inherited nuclear genomes. Few studies have examined the consequences of cytonuclear interactions to physiological function across environments. Here, we quantify the degree of co-introgression between chloroplast and nuclear-chloroplast (N-cp) genes across repeated hybrid zones and its consequences to physiological function across environments. We use whole-genome resequencing and common garden experiments with clonally replicated genotypes sampled across the natural hybrid zone betweenPopulus trichocarpaandP. balsamifera. We use geographic clines to test for co-introgression of the chloroplast genome with N-cp and non-interacting nuclear genes. Co-introgression of chloroplast and N-cp genes was limited although contact zone-specific patterns suggest that local environments may influence co-introgression. Combining ancestry estimates with phenotypic data across common gardens revealed that mismatches between chloroplast and nuclear ancestry can influence physiological performance, but the strength and direction of these effects vary depending on the environment. Overall, this study highlights the importance of cytonuclear interactions to adaptation, and the role of environment in modifying the effect of those interactions. 
    more » « less
  4. Abstract Stomata play a critical role in regulating plant responses to climate. Where sister species differ in stomatal traits, interspecific gene flow can influence the evolutionary trajectory of trait variation, with consequences to adaptation.Leveraging six latitudinally-distributed transects spanning the natural hybrid zone betweenPopulus trichocarpa–P. balsamifera, we used whole genome resequencing and replicate common garden experiments to test the role that interspecific gene flow and selection play to stomatal trait evolution.While species-specific differences in the distribution of stomata persist betweenP. balsamiferaandP. trichocarpa, hybrids on average resembledP. trichocarpa. Admixture mapping identified several candidate genes associated with stomatal trait variation in hybrids includingTWIST, a homolog ofSPEECHLESSinArabidopsis, that initiates stomatal development via asymmetric cell divisions. Geographic clines revealed candidate genes deviating from genome-wide average patterns of introgression, suggesting restricted gene flow and the maintenance of adaptive differences. Climate associations, particularly with precipitation, indicated selection shapes local ancestry at candidate genes across transects.These results highlight the role of climate in shaping stomatal trait evolution inPopulusand demonstrate how interspecific gene flow creates novel genetic combinations that may enhance adaptive potential in changing environments. 
    more » « less
  5. Abstract Symbionts within the familySymbiodiniaceaeare important on coral reefs because they provide significant amounts of carbon to many different reef species. The breakdown of this mutualism that occurs as a result of increasingly warmer ocean temperatures is a major threat to coral reef ecosystems globally. Recombination during sexual reproduction and high rates of somatic mutation can lead to increased genetic variation within symbiont species, which may provide the fuel for natural selection and adaptation. However, few studies have asked whether such variation in functional traits exists within these symbionts. We used several genotypes of two closely related species,Breviolum antillogorgiumandB. minutum, to examine variation of traits related to symbiosis in response to increases in temperature or nitrogen availability in laboratory cultures. We found significant genetic variation within and among symbiont species in chlorophyll content, photosynthetic efficiency, and growth rate. Two genotypes showed decreases in traits in response to increased temperatures predicted by climate change, but one genotype responded positively. Similarly, some genotypes within a species responded positively to high‐nitrogen environments, such as those expected within hosts or eutrophication associated with global change, while other genotypes in the same species responded negatively, suggesting context‐dependency in the strength of mutualism. Such variation in traits implies that there is potential for natural selection on symbionts in response to temperature and nutrients, which could confer an adaptive advantage to the holobiont. 
    more » « less