skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 27, 2026

Title: Kashiwara–Vergne solutions degree by degree
We show that solutions to the Kashiwara–Vergne problem can be extended degree by degree. This can be used to simplify the computation of a class of Drinfel’d associators, which under the Alekseev–Torossian conjecture, may comprise all associators. We also give a proof that the associated graded Lie algebra of the Kashiwara–Vergne group is isomorphic to the graded Kashiwara–Vergne Lie algebra.  more » « less
Award ID(s):
2302664
PAR ID:
10633527
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Academie des Sciences Institute de France
Date Published:
Journal Name:
Comptes Rendus. Mathématique
Volume:
363
Issue:
G8
ISSN:
1778-3569
Page Range / eLocation ID:
777 to 789
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The rational homotopy type of a mapping space is a way to describe the structure of the space using the algebra of its homotopy groups and the differential graded algebra of its cochains. An L∞-model is a graded Lie algebra with a family of higher-order brackets satisfying the generalized Jacobi identity and antisymmetry. It can be used to study the rational homotopy type of a space. The nilpotency index of an L∞-model is useful in understanding a space's algebraic structure. In this paper, we compute the rational homotopy type of the component of some mapping spaces between projective spaces and determine the nilpotency index of corresponding L∞-models. 
    more » « less
  2. Abstract An embedding of the complete bipartite graph $$K_{3,3}$$ in $$\mathbb{P}^{2}$$ gives rise to both a line arrangement and a bar-and-joint framework. For a generic placement of the six vertices, the graded Betti numbers of the logarithmic module of derivations of the line arrangement are constant, but an important example due to Ziegler shows that the graded Betti numbers are different when the points lie on a conic. Similarly, in rigidity theory a generic embedding of $$K_{3,3}$$ in the plane is an infinitesimally rigid bar-and-joint framework, but the framework is infinitesimally flexible when the points lie on a conic. We develop the theory of weak perspective representations of hyperplane arrangements to formalize and generalize the striking connection between hyperplane arrangements and rigidity theory that the example above suggests. In characteristic zero we show that there is a one-to-one correspondence between weak perspective representations of a hyperplane arrangement and polynomials of minimal degree in certain saturations of the Jacobian ideal of the arrangement, providing a connection to algebra. In this setting we can use duality theorems to explain how rigidity theory is reflected in the graded Betti numbers of the module of logarithmic derivations of a line arrangement. 
    more » « less
  3. Abstract. Information about the absolute Galois group G K of a number field K is encoded in how it acts on the ´etale fundamental group π of a curve X defined over K. In the case that K = Q ( ζ n ) is the cyclotomic field and X is the Fermat curve of degree n ≥ 3, Anderson determined the action of G K on the ´etale homology with coefficients in Z/nZ. The ´etale homology is the first quotient in the lower central series of the ´etale fundamental group. In this paper, we determine the Galois module structure of the graded Lie algebra for π. As a consequence, this determines the action of G K on all degrees of the associated graded quotient of the lower central series of the ´etale fundamental group of the Fermat curve of degree n, with coefficients in Z/nZ. 
    more » « less
  4. null (Ed.)
    By a fundamental theorem of D. Quillen, there is a natural duality - an instance of general Koszul duality - between differential graded (DG) Lie algebras and DG cocommutative coalgebras defined over a field k of characteristic 0. A cyclic pairing (i.e., an inner product satisfying a natural cyclicity condition) on the cocommutative coalgebra gives rise to an interesting structure on the universal enveloping algebra Ua of the Koszul dual Lie algebra a called the derived Poisson bracket. Interesting special cases of the derived Poisson bracket include the Chas-Sullivan bracket on string topology. We study the derived Poisson brackets on universal enveloping algebras Ua, and their relation to the classical Poisson brackets on the derived moduli spaces DRep_g(a) of representations of a in a finite dimensional reductive Lie algebra g. More specifically, we show that certain derived character maps of a intertwine the derived Poisson bracket with the classical Poisson structure on the representation homology HR(a, g) related to DRep_g(a). 
    more » « less
  5. The modular group algebra of an elementary abelian p-group is isomorphic to the restricted enveloping algebra of a commutative restricted Lie algebra. The different ways of regarding this algebra result in different Hopf algebra structures that determine cup products on cohomology of modules. However, it is proved in this paper that the products with elements of the polynomial subring of the cohomology ring generated by the Bocksteins of the degree one elements are independent of the choice of these coalgebra structures. 
    more » « less