skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2026

Title: ALATDYN: A set of Anharmonic LATtice DYNamics codes to compute thermodynamic and thermal transport properties of crystalline solids
We introduce a lattice dynamics package which calculates elastic, thermodynamic and thermal transport properties of crystalline materials from data on their force and potential energy as a function of atomic positions. The data can come from density functional theory (DFT) calculations or classical molecular dynamics runs performed in a supercell. First, the model potential parameters, which are anharmonic force constants are extracted from the latter runs. Then, once the anharmonic model is defined, thermal conductivity and equilibrium properties at finite temperatures can be computed using lattice dynamics, Boltzmann transport theories, and a variational principle respectively. In addition, the software calculates the mechanical properties such as elastic tensor, Gruneisen parameters and the thermal expansion coefficient within the quasi-harmonic approximation (QHA). Phonons, elastic constants and thermodynamic properties results applied to the germanium crystal will be illustrated. Using the force constants as a force field, one may also perform molecular dynamics (MD) simulations in order to investigate the combined effects of anharmonicity and defect scattering beyond perturbation theory.  more » « less
Award ID(s):
2103989
PAR ID:
10633536
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Computer Physics Communications , Elsevier
Date Published:
Journal Name:
Computer Physics Communications
Volume:
312
Issue:
C
ISSN:
0010-4655
Page Range / eLocation ID:
109575
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Entropy stabilized oxide of MgNiCoCuZnO5, also known as J14, is a material of active research interest due to a high degree of lattice distortion and tunability. Lattice distortion in J14 plays a crucial role in understanding the elastic constants and lattice thermal conductivity within the single-phase crystal. In this work, a neuroevolution machine learning potential (NEP) is developed for J14, and its accuracy has been compared to density functional theory calculations. The training errors for energy, force, and virial are 5.60 meV/atom, 97.90 meV/Å, and 45.67 meV/atom, respectively. Employing NEP potential, lattice distortion, and elastic constants is studied up to 900 K. In agreement with experimental findings, this study shows that the average lattice distortion of oxygen atoms is relatively higher than that of all transition metals in entropy-stabilized oxide. The observed distortion saturation in the J14 arises from the competing effects of minimum site distortion, which increases with increasing temperature due to enhanced thermal vibrations, and maximum site distortion, which decreases with increasing temperature. Furthermore, a series of molecular dynamics simulations up to 900 K are performed to study the stress–strain behavior. The elastic constants, bulk modulus, and ultimate tensile strength obtained from these simulations indicate a linear decrease in these properties with temperature, as J14 becomes softer owing to thermal effects. Finally, to gain some insight into thermal transport in these materials, with the so-developed NEP potential, and using non-equilibrium molecular dynamics simulations, we study the lattice thermal conductivity (κ) of the ternary compound MgNiO2 as a function of temperature. It is found that κ decreases from 4.25 W m−1 K−1 at room temperature to 3.5 W m−1 K−1 at 900 K. This suppression is attributed to the stronger scattering of low-frequency modes at higher temperatures. 
    more » « less
  2. Abstract We report the topological phase and thermoelectric properties of bialkali bismuthide compounds (Na, K) 2 RbBi, as yet hypothetical. The topological phase transitions of these compounds under hydrostatic pressure are investigated. The calculated topological surface states and Z 2 topological index confirm the nontrivial topological phase. The electronic properties and transport coefficients are obtained using the density functional theory combined with the Boltzmann transport equation. The relaxation times are determined using the deformation potential theory to calculate the electronic thermal and electrical conductivity. The calculated mode Grüneisen parameters are substantial, indicating strong anharmonic acoustic phonons scattering, which results in an exceptionally low lattice thermal conductivity. These compounds also have a favorable power factor leading to a relatively flat p-type figure-of-merit over a broad temperature range. Furthermore, the mechanical properties and phonon band dispersions show that these structures are mechanically and dynamically stable. Therefore, they offer excellent candidates for practical applications over a wide range of temperatures. 
    more » « less
  3. A novel computational strategy is presented to calculate from first principles the coefficient of thermal expansion and the elastic constants of a material over meaningful intervals of temperature and pressure. This strategy combines a novel implementation of the quasiharmonic approximation to calculate the isothermal-isochoric linear and nonlinear elastic constants of a material, with elementary equations of nonlinear continuum mechanics. Our implementation of the quasiharmonic approximation relies on finite deformations, the use of nonprimitive supercells to describe a material, a recently proposed technique to calculate generalized mode Grüneisen parameters, and the numerical differentiation of the stress tensor to calculate both second- and third-order elastic constants. The combination of this method with nonlinear continuum mechanics is shown to yield accurate predictions of lattice parameters and linear elastic constants of a material over finite intervals of temperature and pressure, at the cost of calculating isothermal second- and third-order elastic constants for a single reference state. Here, the validity and limits of our novel methods are assessed by carrying out calculations of MgO based on classical interatomic potentials. To demonstrate potential, our methods are then used in conjunction with a density functional theory approach to calculate thermal expansion and elastic properties of silicon, lithium hydrate, and graphite. 
    more » « less
  4. Abstract Although first principles based anharmonic lattice dynamics is one of the most common methods to obtain phonon properties, such method is impractical for high-throughput search of target thermal materials. We develop an elemental spatial density neural network force field as a bottom-up approach to accurately predict atomic forces of ~80,000 cubic crystals spanning 63 elements. The primary advantage of our indirect machine learning model is the accessibility of phonon transport physics at the same level as first principles, allowing simultaneous prediction of comprehensive phonon properties from a single model. Training on 3182 first principles data and screening 77,091 unexplored structures, we identify 13,461 dynamically stable cubic structures with ultralow lattice thermal conductivity below 1 Wm −1 K −1 , among which 36 structures are validated by first principles calculations. We propose mean square displacement and bonding-antibonding as two low-cost descriptors to ease the demand of expensive first principles calculations for fast screening ultralow thermal conductivity. Our model also quantitatively reveals the correlation between off-diagonal coherence and diagonal populations and identifies the distinct crossover from particle-like to wave-like heat conduction. Our algorithm is promising for accelerating discovery of novel phononic crystals for emerging applications, such as thermoelectrics, superconductivity, and topological phonons for quantum information technology. 
    more » « less
  5. Grein, Christoph (Ed.)
    Phonons, as quantized vibrational modes in crystalline materials, play a crucial role in determining a wide range of physical properties, such as thermal and electrical conductivity, making their study a cornerstone in materials science. In this study, we present a simple yet effective strategy for deep learning harmonic phonons in crystalline solids by leveraging existing phonon databases and state-of-the-art machine learning techniques. The key of our method lies in transforming existing phonon datasets, primarily represented in interatomic force constants, into a force-displacement representation suitable for training machine learning universal interatomic potentials. By applying our approach to one of the largest phonon databases publicly available, we demonstrate that the resultant machine learning universal harmonic interatomic potential not only accurately predicts full harmonic phonon spectra but also calculates key thermodynamic properties with remarkable precision. Furthermore, the restriction to a harmonic potential energy surface in our model provides a way of assessing uncertainty in machine learning predictions of vibrational properties, essential for guiding further improvements and applications in materials science. 
    more » « less