Two generations of dikes and sills (earlier granodiorite, later leucogranite) have intruded quartzofeldspathic to semi-pelitic hornfels in the innermost ~200 meters of the southern contact aureole of the Alta stock. Both zircon and monazite are present in the older granodiorite intrusions, and monazite alone is present in the younger leucogranite intrusions, and in biotite-rich reaction selvages formed by hydrothermal contact metamorphism in hornfels adjacent to these dikes and sills. U-Pb dates for zircon (n=532) range from ~38 to 32 Ma, with error on individual measurements of ±1–1.5 Ma, and define a KDE peak at 34.5 Ma. These zircon dates are slightly older than, but consistent with, existing zircon data from the Alta stock (35 to 32 Ma; Stearns et al., 2020), suggesting that the construction of the Alta stock began by emplacement of these granodiorite sills and dikes. Monazite Th-Pb dates (n = 888) range from ~41 to 28 Ma with error on individual measurements of ± 1–1.5 Ma. These dates are complicated by disturbances to the U/Th-Pb systematics by common Pb (Pbc) and excess 206Pb due to 230Th. Dates >38 Ma are disturbed by significant Pbc and do not represent crystallization ages. Dates from the granodiorites range from ~38–32 Ma. In individual samples of granodiorite where the disturbance from excess 206Pb can be rigorously evaluated, the monazite data sets yield concordant 232Th-208Pb and 207Pb/206Pb-corrected dates centered at ~35 Ma, consistent with zircon dates from these same samples. Monazite dates from the leucogranites are younger (<33 Ma), consistent with cross-cutting relationships (leucogranites cross-cut granodiorites). The monazite data from the leucogranite sills and dikes do not record magmatic or hydrothermal activity after ~29 Ma, in contrast to the titanite record of hydrothermal activity to as late as ~23 Ma in the border zone of the Alta stock and its endoskarns (Stearns et al., 2020). This absence suggests that once magma injection and associated contact metamorphism in the hornfels ceased, permeability in the hornfels decreased sufficiently by ~29 Ma to prevent subsequent infiltration of significant fluxes of hydrothermal fluid into these hornfels lithologies in the aureole.
more »
« less
This content will become publicly available on May 1, 2026
Timing of Dike and Sill Emplacement in the Inner Aureole of the Alta Stock, Utah Determined by Zircon and Monazite Petrochronology
Abstract Detailed geochronology from two compositionally distinct generations of dikes and sills intruded into the Alta metamorphic aureole, north‐central Utah, complement previous geochronologic studies from the Alta stock, providing information on the timing of magmatism and the nature of emplacement. Uranium/thorium‐lead dates and chemistry were measured in zircon and monazite from these intrusions and associated reaction selvages in hornfels by split‐stream laser ablation techniques. Concordant zircon U‐Pb dates (n = 532) define a dispersed population of dates that range from ∼38 to 32 Ma. Monazite Th‐Pb dates (n = 888) from granodioritic compositions range from ∼40 to 32 Ma. Evaluation of208Pb/232Th and207Pb/206Pb‐corrected dates with respect to common Pb, U and Th/U values allows rigorous evaluation of the effects of excess206Pb in these young monazites, yielding concordant208Pb/232Th and207Pb/206Pb‐corrected dates in monazites from the granodiorite, consistent with zircon dates from the same thin sections. Leucogranite sills and dikes, which cross‐cut the older granodiorite, have younger monazite dates from ∼33 to 28 Ma. Elevated heavy rare earth element concentrations and trends of larger negative Eu anomalies in the youngest monazites suggest crystallization from an evolved melt. Integration of these new geochronology results and field relationships with prior results from the Alta stock indicate the granodiorite represents the oldest material emplaced in the Alta system. Leucogranite aplite/pegmatite dikes and sills in the inner Alta aureole were emplaced during the final stage of Alta stock construction by injection of evolved water‐rich magmas.
more »
« less
- Award ID(s):
- 1853806
- PAR ID:
- 10634011
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Geochemistry, Geophysics, Geosystems
- Volume:
- 26
- Issue:
- 5
- ISSN:
- 1525-2027
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Redox-sensitive elements figure prominently in studies of the evolution of Earth’s surface redox state, including the first major rise in atmospheric O2, the Paleoproterozoic Great Oxidation Event. Most Precambrian rocks endured multistage tectonothermal histories, however, adding ambiguity to interpretation of their chemistry. Here, we apply U-Th-Pb isotope geochronology to the highly oxidized ~2.06 Ga Kuetsjärvi Volcanic Formation, Pechenga Greenstone Belt, Russia, to constrain the age and extent of U oxidation. By contrasting the relative mobility of U and Th using Pb isotopes, we find that complete to near-complete oxidation and removal of U occurred shortly after eruption. We argue that this likely indicates relatively high atmospheric O2, where oxidative weathering and alteration produced a global pulse of U to the oceans. Such a pulse could explain widespread shifts in the U-Th-Pb isotope character of mantle reservoirs at ~2 Ga, including a decrease in the232Th/238U ratio of the mid-ocean ridge basalt source and inception of the high-238U/204Pb (HIMU) source to ocean island basalts, underscoring the connections between the redox character of the Paleoproterozoic surface and deep Earth. Using207Pb-206Pb,238U-206Pb,235U-207Pb, and232Th-208Pb geochronology, ~2.06 Ga oxidative loss of U may be distinguished from reintroduction of U at ~1.8 Ga during regional metamorphism, as well as Pb loss during a Phanerozoic tectonothermal event. Our results therefore establish the complex history of redox-sensitive element behavior in the rocks, highlighting the fact that elemental abundances, by themselves, are unlikely to capture straightforward proxy information in rocks that have seen multistage geologic histories.more » « less
-
null (Ed.)Age determination of minerals using the U–Pb technique is widely used to quantify time in Earth's history. A number of geochronology laboratories produce the highest precision U–Pb dates employing the EARTHTIME 202 Pb– 205 Pb– 233 U– 235 U tracer solution for isotope dilution, and the EARTHTIME ET100 and ET2000 solutions for system calibration and laboratory intercalibration. Here, we report ET100 and ET2000 solution data from the geochronology laboratory of University of Geneva obtained between 2008 and 2021 and compare the most recent data with results from the geochronology laboratories of Princeton University and ETH Zürich. This compilation demonstrates that (i) the choice of the thermal ionization mass spectrometer model has no influence on precision and accuracy of the data; (ii) the often observed excess scatter of apparent ET100 solution 206 Pb/ 238 U dates can be mitigated by more careful tracer-sample equilibration; and (iii) natural zircon reference materials are not suitable for evaluating intra-laboratory repeatability and inter-laboratory reproducibility, since they combine several phenomena of natural system complexities (especially domains of different age within the same zircon grain, and residual loss of radiogenic lead in domains of high decay damage after chemical abrasion pre-treatment). We provide our best estimates of apparent dates for the ET100 solution ( 206 Pb/ 238 U date, 100.173 ± 0.003 Ma), for ET2000 solution ( 207 Pb/ 206 Pb date, 1999.935 ± 0.063 Ma), as well as for natural reference zircon Temora-2 ( 206 Pb/ 238 U date, 417.353 ± 0.052 Ma). These data will allow U–Pb laboratories to evaluate their analytical performance and to independently calibrate non-EARTHTIME tracer solutions in use.more » « less
-
Abstract Iceland's oldest silicic rocks provide unique insight into the island's early crustal evolution. We present new zircon U‐Pb ages bolstered with zircon trace element and isotopic compositions, and whole rock Nd, Hf, and Pb isotope compositions, from three silicic magmatic centers—Hrafnsfjörður, Árnes, and Kaldalón—to understand the petrogenesis of large silicic volcanic centers in the northern Westfjords, Iceland. Our data confirm Hrafnsfjörður as the oldest known central volcano in Iceland (∼14 Ma) and establish an older age for Árnes (∼13 Ma) than previously estimated. We also report the first U‐Pb zircon dates from Kaldalón (∼13.5 Ma). Zircon oxygen isotope compositions range from δ18O∼+2 to +4‰ and indicate involvement of a low‐18O component in their source magmas. Hrafnsfjörður zircon Hf (mean sampleεHf∼ +15.3–16.0) and whole rock Hf and Nd (εHf = +14.5 to +15;εNd = +7.9 to +8.1) isotopic compositions are more radiogenic than those from Árnes (zircon sampleεHf∼ +11.8–13; whole rockεHf = +12.8 to +15.1;εNd = +7.3 to +7.7), but Hrafnsfjörður whole rock Pb isotope compositions (208/204Pb = 37.95–37.96;206/204Pb = 18.33–18.35) are less radiogenic than those from Árnes (208/204Pb = 38.34–38.48;206/204Pb = 18.64–18.78). Kaldalón has zircon Hf isotope compositions ofεHf∼+14.8 and 15.5 (sample means). These age and isotopic differences suggest that interaction of rift and plume, and thus the geodynamic evolution of the Westfjords, is complex. Isotopic compositions of Hrafnsfjörður and Árnes support involvement of an enriched mantle (EM)‐like mantle component associated with a pulsing plume that resulted in variable spreading rates and magma fluxes and highlight the heterogeneity of the Icelandic mantle.more » « less
-
Abstract We present a comprehensive petrological and geochronological study of a single granulite sample from the lithosphere‐scale Beraketa shear zone in southern Madagascar to constrain the orogenic history of Gondwana assembly in this region. The studied sample provides a panoply of data constraining the prograde, retrograde, and late metasomatic history of the region via the application of Ti‐in‐quartz, Ti‐in‐zircon, Zr‐in‐rutile, and Al‐in‐orthopyroxene thermobarometry; phase‐equilibrium modelling; U–Pb monazite, zircon, and rutile petrochronology; and trace element diffusion chronometry in rutile. Our results reveal five stages of metamorphism along a narrow clockwiseP–Tpath that may have begun as early as 620–600 Ma and certainly by 580–560 Ma, based on the oldest concordant zircon dates. The rock was heated to >725°C at less than 7.5 kbar (Stage 1) before burial to ~8 kbar (Stage 2). Byc. 540 Ma, the rock had heated to ~970°C at ~9 kbar, and lost approximately 12% melt (Stage 3), before decompressing and cooling to the solidus at ~860°C and 6.5 kbar within 10 Ma (Stage 4). The vast majority of monazite and zircon dates record Stage 4 cooling and exhumation. Monazite and zircon rim dates as young asc. 510 Ma record subsolidus cooling (Stage 5) and associated symplectite formation around garnet. U–Pb rutile dates record partial resetting atc. 460 Ma; Zr‐ and Nb‐in‐rutile diffusion chronometry link these dates to a metasomatic event that lasted <1 Ma at ~600°C. In addition to chronicling a near‐complete cycle of metamorphism in southern Madagascar, this study constrains the rates of heating and cooling. We estimate that heating (7–14°C/Ma) outpaced reasonable radiogenic heating rates with modest mantle heat conduction. Therefore, we conclude that elevated mantle heat conduction or injection of mantle‐derived magmas likely contributed to regional ultrahigh‐temperature metamorphism (UHTM). Exhumation and cooling from peak metamorphic conditions to the solidus occurred at rates greater than 0.45 km/Ma and 14°C/Ma.more » « less
An official website of the United States government
