skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Conformational Analysis of Oligomeric Models of Siloxane, Silazane and Siloxazane Ladder Polymers
Abstract Oligomeric models of linear ladder silanes, siloxanes and siloxazanes with seven repeat units consisting of four-, six-, or eight-membered rings were designed and their conformations in chloroform were explored. The Low Mode–Monte Carlo conformational method was used to explore oligomeric flexibility on the OPLS-2005/GBSA(CHCl3) potential energy surface to obtain a set of low energy structures for each oligomer. These structures were then optimized using B3LYP/6-31G*/SCRF-PBF(CHCl3) calculations. The results indicate complex conformational dynamics with mostly non-planar, curved structures. Electron delocalization from the lone pair of electrons on N or O into empty 3d orbitals on Si was not observed.  more » « less
Award ID(s):
2320718
PAR ID:
10634167
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Journal of Inorganic and Organometallic Polymers and Materials
Volume:
34
Issue:
7
ISSN:
1574-1443
Page Range / eLocation ID:
2893 to 2902
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ceramic/polymer composites can be chemically stable, mechanically strong, and flexible, which make them candidates for electric devices, such as pressure or temperature sensors, energy storage or harvesting devices, actuators, and so forth. Depending on the application, various electrical properties are of importance. Polymers usually have low dielectric permittivity, but increased dielectric permittivity can be achieved by the addition of the ceramic fillers with high dielectric constant. With the aim to enhance dielectric properties of the composite without loss of flexibility, 5 wt% of BaTiO3‐Fe2O3powder was added into a polyvinylidene fluoride matrix. The powder was prepared by different synthesis conditions to produce core/shell structures. The effect of the phase composition and morphology of the BaTiO3‐Fe2O3core/shell filler on the structure and lattice dynamics of the polymer composites was investigated. Based on the results of the thermal analysis, various parameters of ceramic/polymer composites were determined. Differences in the phase composition and morphology of the filler have an influence on the formation of various polyvinylidene fluoride allomorphs and the degree of crystallinity. Furthermore, the dielectric performances of pure polyvinylidene fluoride and the polymer/ceramic composites were measured. 
    more » « less
  2. Abstract We report on a dendronized bis‐urea macrocycle1self‐assembling via a cooperative mechanism into two‐dimensional (2D) nanosheets formed solely by alternated urea‐urea hydrogen bonding interactions. The pure macrocycle self‐assembles in bulk into one‐dimensional liquid‐crystalline columnar phases. In contrast, its self‐assembly mode drastically changes in CHCl3or tetrachloroethane, leading to 2D hydrogen‐bonded networks. Theoretical calculations, complemented by previously reported crystalline structures, indicate that the 2D assembly is formed by a brick‐like hydrogen bonding pattern between bis‐urea macrocycles. This assembly is promoted by the swelling of the trisdodecyloxyphenyl groups upon solvation, which frustrates, due to steric effects, the formation of the thermodynamically more stable columnar macrocycle stacks. This work proposes a new design strategy to access 2D supramolecular polymers by means of a single non‐covalent interaction motif, which is of great interest for materials development. 
    more » « less
  3. Abstract Chlorinated very short‐lived substances (Cl‐VSLS) are ubiquitous in the troposphere and can contribute to the stratospheric chlorine budget. In this study, we present measurements of atmospheric dichloromethane (CH2Cl2), tetrachloroethene (C2Cl4), chloroform (CHCl3), and 1,2‐dichloroethane (1,2‐DCA) obtained during the National Aeronautics and Space Administration (NASA) Atmospheric Tomography (ATom) global‐scale aircraft mission (2016–2018), and use the Community Earth System Model (CESM) updated with recent chlorine chemistry to further investigate their global tropospheric distribution. The measured global average Cl‐VSLS mixing ratios, from 0.2 to 13 km altitude, were 46.6 ppt (CH2Cl2), 9.6 ppt (CHCl3), 7.8 ppt (1,2‐DCA), and 0.84 ppt (C2Cl4) measured by the NSF NCAR Trace Organic Analyzer (TOGA) during ATom. Both measurements and model show distinct hemispheric gradients with the mean measured Northern to Southern Hemisphere (NH/SH) ratio of 2 or greater for all four Cl‐VSLS. In addition, the TOGA profiles over the NH mid‐latitudes showed general enhancements in the Pacific basin compared to the Atlantic basin, with up to ∼18 ppt difference for CH2Cl2in the mid troposphere. We tagged regional source emissions of CH2Cl2and C2Cl4in the model and found that Asian emissions dominate the global distributions of these species both at the surface (950 hPa) and at high altitudes (150 hPa). Overall, our results confirm relatively high mixing ratios of Cl‐VSLS in the UTLS region and show that the CESM model does a reasonable job of simulating their global abundance but we also note the uncertainties with Cl‐VSLS emissions and active chlorine sources in the model. These findings will be used to validate future emission inventories and to investigate the fast convective transport of Cl‐VSLS to the UTLS region and their impact on stratospheric ozone. 
    more » « less
  4. Abstract The crystal structures of 4 ligand‐rotational isomers of Au25(PET)18are presented. Two new ligand‐rotational isomers are revealed, and two higher‐quality structures (allowing complete solution of the ligand shell) of previously solved Au25(PET)18clusters are also presented. One of the structures lacks an inversion center, making it the first chiral Au25(SR)18structure solved. These structures combined with previously published Au25(SR)18structures enable an analysis of the empirical ligand conformation landscape for Au25(SR)18clusters. This analysis shows that the dihedral angles within the PET ligand are restricted to certain observable values, and also that the dihedral angle values are interdependent, in a manner reminiscent of biomolecule dihedral angles such as those in proteins and DNA. The influence of ligand conformational isomerism on optical and electronic properties was calculated, revealing that the ligand conformations affect the nanocluster absorption spectrum, which potentially provides a way to distinguish between isomers at low temperature. 
    more » « less
  5. Abstract The starting point for this work was a set of crystal structures containing the motif of interaction between methyl groups in homodimers. Two structures were selected for which QTAIM, NCI and NBO analyses suggested an attractive interaction. However, the calculated interaction energy was negative for only one of these systems. The ability of methyl groups to interact with one another is then examined by DFT calculations. A series of (CH3PnHCH3)2homodimers were allowed to interact with each other for a range of Pn atoms N, P, As, and Sb. Interaction energies of these C⋅⋅⋅C tetrel‐bonded species were below 1 kcal/mol, but could be raised to nearly 3 kcal/mol if the C atom was changed to a heavier tetrel. A strengthening of the C⋅⋅⋅C intermethyl bonds can also be achieved by introducing an asymmetry via an electron‐withdrawing substituent on one unit and a donor on the other. The attractions between the methyl and related groups occur in spite of a coulombic repulsion between σ‐holes on the two groups. NBO, AIM, and NCI tools must be interpreted with caution as they can falsely suggest bonding when the potentials are repulsive. 
    more » « less