skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2026

Title: Hydrothermally Induced Refractory DOC Sinks in the Deep Pacific Ocean
Dissolved organic carbon (DOC) constitutes the largest pool of reduced carbon in the global ocean, with important contributions from both recently formed and aged, biologically refractory DOC (RDOC). The mechanisms regulating RDOC transformation and removal remain uncertain though hydrothermal vents have been identified as sources and sinks. This study examines RDOC sinks in the deep Pacific Ocean, highlighting the role of submarine hydrothermal systems. Geochemical survey data from GO‐SHIP and GEOTRACES projects, alongside specific investigations of Pacific hydrothermal systems, suggest that particulate iron introduced by hydrothermal systems plays a key role in scavenging DOC and delivering it to the seafloor, leaving a deficit in the RDOC of the deep ocean. Dilution of the oceanic water column by hydrothermal fluids exhibiting low DOC concentrations likely plays a secondary role.  more » « less
Award ID(s):
1851106 1851007 2304493
PAR ID:
10634225
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
39
Issue:
9
ISSN:
0886-6236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Large volumes of seawater have passed through the rocky subseafloor throughout Earth’s history. The scale of circulation is sufficiently large to impact the cycling of marine dissolved organic carbon (DOC), one of the largest pools of reduced carbon on Earth whose sources and sinks remain enigmatic, and to sequester carbon over geologic timescales. While the fate of DOC in numerous mafic systems has been examined, no previous reports are available on the less studied but still abundant ultramafic systems. We analyzed the concentration and composition of DOC from the Lost City hydrothermal field (30°N, Mid-Atlantic Ridge), a long-lived ultramafic system with minimal magmatic input. We show that per liter of seawater, more DOC is removed and a rate >650 times faster rate than in mafic ridge flank systems. Simultaneously, newly synthesized 14C-free organics are exported into the water column, adding a pre-aged component to the deep DOC pool. The sequestration of oceanic organic molecules onto minerals could partially account for the substantial total organic carbon present in ultramafic rocks, which is currently interpreted as evidence of chemoautotrophy or abiotic synthesis. 
    more » « less
  2. Abstract We use the transport matrices of a data‐constrained circulation model to efficiently compute the steady state distribution of the deep ocean dissolved organic carbon (DOC) at a 1° horizontal resolution by propagating the surface DOC boundary conditions into the ocean interior. An equivalent simulation in the traditional forward modeling approach would be prohibitively computationally expensive. Our model simulates the total DOC as the sum of two DOC pools, the refractory and the semi‐labile. The model is able to simulate the large‐scale features of the deep ocean DOC without local sources or sinks of DOC in the ocean interior. The deep ocean DOC in the model is sensitive to the preformed DOC concentrations in the formation sites of deep and bottom waters, where observations are lacking. Furthermore, our model experiments indicate that the deep Atlantic DOC gradient is sensitive to the mixing of deep waters with different concentrations of preformed refractory DOC, the transport of semi‐labile DOC from the surface North Atlantic, and the decay rate of semi‐labile DOC. These, combined with the observation that much of the deep ocean DOC gradient is in the Atlantic, suggests that the semi‐labile DOC may be an important component of the deep Atlantic DOC. Finally, we show that DOC export depends substantially on the depth level where it is evaluated. 
    more » « less
  3. Hydrothermal vents serve as a primary interface between the cold deep ocean and the warm oceanic crust. While early research showed that seawater-​rock interactions add to or remove elements from seawater during the generation of hydrothermal fluids, consideration of these fluid fluxes alone does not relay the total impact that hydrothermal systems have on seawater geochemistry. In addition, hydrothermal plumes, areas where hydrothermal fluids mix with ocean waters, are host to a range of particle precipitation and scavenging reactions that further modify gross hydrothermal fluid fluxes to define the total “net” hydrothermal impact on oceanic inventories. Here, we review the major discoveries made by the international GEOTRACES program regarding the geochemical transformations occurring within hydrothermal plumes. We classify each element into one of five categories based on its behavior in hydrothermal plumes, a spectrum spanning the geochemical mass balance between net hydrothermal source fluxes and net hydrothermal plume scavenging sinks. Overall, we celebrate the role that GEOTRACES has played in defining the extent and dynamics of hydrothermal plume geochemistry, which is a crucial lever for determining global hydrothermal impacts. 
    more » « less
  4. Abstract The northeast Pacific Coastal Temperate Rainforest (NPCTR) extending from southeast Alaska to northern California is characterized by high precipitation and large stores of recently fixed biological carbon. We show that 3.5 Tg‐C yr−1as dissolved organic carbon (DOC) is exported from the NPCTR drainage basin to the coastal ocean. More than 56% of this riverine DOC flux originates from thousands of small (mean = 118 km2), coastal watersheds comprising 22% of the NPCTR drainage basin. The average DOC yield from NPCTR coastal watersheds (6.20 g‐C m−2 yr−1) exceeds that from Earth's tropical regions by roughly a factor of three. The highest yields occur in small, coastal watersheds in the central NPCTR due to the balance of moderate temperature, high precipitation, and high soil organic carbon stocks. These findings indicate DOC export from NPCTR watersheds may play an important role in regional‐scale heterotrophy within near‐shore marine ecosystems in the northeast Pacific. 
    more » « less
  5. null (Ed.)
    The oceans teem with heterotrophic bacterioplankton that play an appreciable role in the uptake of dissolved organic carbon (DOC) derived from phytoplankton net primary production (NPP). As such, bacterioplankton carbon demand (BCD), or gross heterotrophic production, represents a major carbon pathway that influences the seasonal accumulation of DOC in the surface ocean and, subsequently, the potential vertical or horizontal export of seasonally accumulated DOC. Here, we examine the contributions of bacterioplankton and DOM to ecological and biogeochemical carbon flow pathways, including those of the microbial loop and the biological carbon pump, in the Western North Atlantic Ocean (∼39–54°N along ∼40°W) over a composite annual phytoplankton bloom cycle. Combining field observations with data collected from corresponding DOC remineralization experiments, we estimate the efficiency at which bacterioplankton utilize DOC, demonstrate seasonality in the fraction of NPP that supports BCD, and provide evidence for shifts in the bioavailability and persistence of the seasonally accumulated DOC. Our results indicate that while the portion of DOC flux through bacterioplankton relative to NPP increased as seasons transitioned from high to low productivity, there was a fraction of the DOM production that accumulated and persisted. This persistent DOM is potentially an important pool of organic carbon available for export to the deep ocean via convective mixing, thus representing an important export term of the biological carbon pump. 
    more » « less