skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 28, 2026

Title: Velocity and Density Fluctuations in the Quiet Sun Corona
Abstract We investigate the properties and relationship between Doppler velocity fluctuations and intensity fluctuations in the off-limb quiet Sun corona. These are expected to reflect the properties of Alfvénic and compressive waves, respectively. The data come from the Coronal Multichannel Polarimeter (COMP). These data were studied using spectral methods to estimate the power spectra, amplitudes, perpendicular correlation lengths, phases, trajectories, dispersion relations, and propagation speeds of both types of fluctuations. We find that most velocity fluctuations are due to Alfvénic waves but that intensity fluctuations come from a variety of sources, likely including fast and slow mode waves, as well as aperiodic variations. The relation between the velocity and intensity fluctuations differs depending on the underlying coronal structure. On short closed loops, the velocity and intensity fluctuations have similar power spectra and speeds. In contrast, on longer nearly radial trajectories, the velocity and intensity fluctuations have different power spectra, with the velocity fluctuations propagating at much faster speeds than the intensity fluctuations. Considering the temperature sensitivity of COMP, these longer structures are more likely to be closed fields lines of the quiet Sun rather than cooler open field lines. That is, we find the character of the interactions of Alfvénic waves and density fluctuations depends on the length of the magnetic loop on which they are traveling.  more » « less
Award ID(s):
2005887
PAR ID:
10634265
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
The Astrophysical Journal
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
984
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
69
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report the detection of transverse magnetohydrodynamic waves, also known as Alfvénic waves, in the chromospheric fibrils of a solar-quiet region. Unlike previous studies that measured transversal displacements of fibrils in imaging data, we investigate the line-of-sight (LOS) velocity oscillations of the fibrils in spectral data. The observations were carried out with the Fast Imaging Solar Spectrograph of the 1.6 m Goode Solar Telescope at the Big Bear Solar Observatory. By applying spectral inversion to the Hαand Caii8542 Å line profiles, we determine various physical parameters, including the LOS velocity in the chromosphere of the quiet Sun. In the Hαdata, we select two adjacent points along the fibrils and analyze the LOS velocities at those points. For the time series of the velocities that show high cross-correlation between the two points and do not exhibit any correlation with intensity, we interpret them as propagating Alfvénic wave packets. We identify a total of 385 Alfvénic wave packets in the quiet-Sun fibrils. The mean values of the period, velocity amplitude, and propagation speed are 7.5 minutes, 1.33 km s−1, and 123 km s−1, respectively. We find that the detected waves are classified into three groups based on their periods, namely, 3, 5, and 10 minute bands. Each group of waves exhibits distinct wave properties, indicating a possible connection to their generation mechanism. Based on our results, we expect that the identification of Alfvénic waves in various regions will provide clues to their origin and the underlying physical processes in the solar atmosphere. 
    more » « less
  2. Abstract Atmospheric gravity waves (AGWs) are low-frequency, buoyancy-driven waves that are generated by turbulent convection and propagate obliquely throughout the solar atmosphere. Their proposed energy contribution to the lower solar atmosphere and sensitivity to atmospheric parameters (e.g., magnetic fields and radiative damping) highlight their diagnostic potential. We investigate AGWs near a quiet-Sun disk center region using multiwavelength data from the Interferometric Bidimensional Spectrometer and the Solar Dynamics Observatory. These observations showcase the complex wave behavior present in the entire acoustic-gravity wave spectrum. Using Fourier spectral analysis and local helioseismology techniques on simultaneously observed line core Doppler velocity and intensity fluctuations, we study both the vertical and horizontal properties of AGWs. Propagating AGWs with perpendicular group and phase velocities are detected at the expected temporal and spatial scales throughout the lower solar atmosphere. We also find previously unobserved, varied phase difference distributions among our velocity and intensity diagnostic combinations. Time–distance analysis indicates that AGWs travel with an average group speed of 4.5 km s−1, which is only partially described by a simple simulation, suggesting that high-frequency AGWs dominate the signal. Analysis of the median magnetic field (4.2 G) suggests that propagating AGWs are not significantly affected by quiet-Sun photospheric magnetic fields. Our results illustrate the importance of multiheight observations and the necessity of future work to properly characterize this observed behavior. 
    more » « less
  3. Abstract We find evidence for the first observation of the parametric decay instability (PDI) in the lower solar atmosphere. In particular, we find that the power spectrum of density fluctuations near the solar transition region resembles the power spectrum of the velocity fluctuations but with the frequency axis scaled up by about a factor of 2. These results are from an analysis of the Si iv lines observed by the Interface Region Imaging Spectrometer in the transition region of a polar coronal hole. We also find that the density fluctuations have radial velocity of about 75 km s −1 and that the velocity fluctuations are much faster with an estimated speed of 250 km s −1 , as is expected for sound waves and Alfvén waves, respectively, in the transition region. Theoretical calculations show that this frequency relationship is consistent with those expected from PDI for the plasma conditions of the observed region. These measurements suggest an interaction between sound waves and Alfvén waves in the transition region, which is evidence for the parametric decay instability. 
    more » « less
  4. The presence and nature of low-frequency (0.1–10 mHz) Alfvénic waves in the corona have been established over the past decade, with many of these results coming from coronagraphic observations of the infrared Fexiiiline. The Cryo-NIRSP instrument situated at DKIST has recently begun acquiring science-quality data of the same Fexiiiline, with at least a factor of 9 improvement in spatial resolution, a factor of 30 increase in temporal resolution, and an increase in signal-to-noise ratio, when compared to the majority of previously available data. Here we present an analysis of 1 s cadence sit-and-stare data from Cryo-NIRSP, examining the Doppler velocity fluctuations associated with the Fexiii1074 nm coronal line. We are able to confirm previous results of Alfvénic waves in the corona and explore a new frequency regime. The data reveal that the power-law behavior of the Doppler velocity power spectrum extends to higher frequencies. This result appears to challenge some models of photospheric-driven Alfvénic waves that predict a lack of high-frequency wave power in the corona owing to strong chromospheric damping. Moreover, the high-frequency waves do not transport as much energy as their low-frequency counterparts, with less time-averaged energy per frequency interval. We are also able to confirm the incompressible nature of the fluctuations with little coherence between the line amplitude and Doppler velocity time series. 
    more » « less
  5. Abstract The transport of waves and turbulence beyond the photosphere is central to the coronal heating problem. Turbulence in the quiet solar corona has been modeled on the basis of the nearly incompressible magnetohydrodynamic (NI MHD) theory to describe the transport of low-frequency turbulence in open magnetic field regions. It describes the evolution of the coupled majority quasi-2D and minority slab component, driven by the magnetic carpet and advected by a subsonic, sub-Alfvénic flow from the lower corona. In this paper, we couple the NI MHD turbulence transport model with an MHD model of the solar corona to study the heating problem in a coronal loop. In a realistic benchmark coronal loop problem, we find that a loop can be heated to ∼1.5 million K by transport and dissipation of MHD turbulence described by the NI MHD model. We also find that the majority 2D component is as important as the minority slab component in the heating of the coronal loop. We compare our coupled MHD/NI MHD model results with a reduced MHD (RMHD) model. An important distinction between these models is that RMHD solves for small-scale velocity and magnetic field fluctuations and obtains the actual viscous/resistive dissipation associated with their evolution whereas NI MHD evolves scalar moments of the fluctuating velocity and magnetic fields and approximates dissipation using an MHD turbulence phenomenology. Despite the basic differences between the models, their simulation results match remarkably well, yielding almost identical heating rates inside the corona. 
    more » « less