We consider the problem of enumerating optimal solutions for two hypergraph k-partitioning problems, namely, Hypergraph-k-Cut and Minmax-Hypergraph-k-Partition. The input in hypergraph k-partitioning problems is a hypergraph [Formula: see text] with positive hyperedge costs along with a fixed positive integer k. The goal is to find a partition of V into k nonempty parts [Formula: see text]—known as a k-partition—so as to minimize an objective of interest. (1) If the objective of interest is the maximum cut value of the parts, then the problem is known as Minmax-Hypergraph-k-Partition. A subset of hyperedges is a minmax-k-cut-set if it is the subset of hyperedges crossing an optimum k-partition for Minmax-Hypergraph-k-Partition. (2) If the objective of interest is the total cost of hyperedges crossing the k-partition, then the problem is known as Hypergraph-k-Cut. A subset of hyperedges is a min-k-cut-set if it is the subset of hyperedges crossing an optimum k-partition for Hypergraph-k-Cut. We give the first polynomial bound on the number of minmax-k-cut-sets and a polynomial-time algorithm to enumerate all of them in hypergraphs for every fixed k. Our technique is strong enough to also enable an [Formula: see text]-time deterministic algorithm to enumerate all min-k-cut-sets in hypergraphs, thus improving on the previously known [Formula: see text]-time deterministic algorithm, in which n is the number of vertices and p is the size of the hypergraph. The correctness analysis of our enumeration approach relies on a structural result that is a strong and unifying generalization of known structural results for Hypergraph-k-Cut and Minmax-Hypergraph-k-Partition. We believe that our structural result is likely to be of independent interest in the theory of hypergraphs (and graphs). Funding: All authors were supported by NSF AF 1814613 and 1907937. 
                        more » 
                        « less   
                    This content will become publicly available on December 15, 2025
                            
                            Retrieving Top-k Hyperedge Triplets: Models and Applications
                        
                    
    
            Complex systems frequently exhibit multi-way, rather than pairwise, interactions. These group interactions cannot be faithfully modeled as collections of pairwise interactions using graphs and instead require hypergraphs. However, methods that analyze hypergraphs directly, rather than via lossy graph reductions, remain limited. Hypergraph motifs hold promise in this regard, as motif patterns serve as building blocks for larger group interactions which are inexpressible by graphs. Recent work has focused on categorizing and counting hypergraph motifs based on the existence of nodes in hyperedge intersection regions. Here, we argue that the relative sizes of hyperedge intersections within motifs contain varied and valuable information. We propose a suite of efficient algorithms for finding top-k triplets of hyperedges based on optimizing the sizes of these intersection patterns. This formulation uncovers interesting local patterns of interaction, finding hyperedge triplets that either (1) are the least similar with each other, (2) have the highest pairwise but not groupwise correlation, or (3) are the most similar with each other. We formalize this as a combinatorial optimization problem and design efficient algorithms based on filtering hyperedges. Our comprehensive experimental evaluation shows that the resulting hyperedge triplets yield insightful information on real-world hypergraphs. Our approach is also orders of magnitude faster than a naive baseline implementation. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2107089
- PAR ID:
- 10634342
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- Proceedings
- ISSN:
- 2573-2978
- ISBN:
- 979-8-3503-6248-0
- Page Range / eLocation ID:
- 630 to 639
- Format(s):
- Medium: X
- Location:
- Washington, DC, USA
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We consider the problem of space-efficiently estimating the number of simplices in a hypergraph stream. This is the most natural hypergraph generalization of the highly-studied problem of estimating the number of triangles in a graph stream. Our input is a k-uniform hypergraph H with n vertices and m hyperedges, each hyperedge being a k-sized subset of vertices. A k-simplex in H is a subhypergraph on k+1 vertices X such that all k+1 possible hyperedges among X exist in H. The goal is to process the hyperedges of H, which arrive in an arbitrary order as a data stream, and compute a good estimate of T_k(H), the number of k-simplices in H. We design a suite of algorithms for this problem. As with triangle-counting in graphs (which is the special case k = 2), sublinear space is achievable but only under a promise of the form T_k(H) ≥ T. Under such a promise, our algorithms use at most four passes and together imply a space bound of O(ε^{-2} log δ^{-1} polylog n ⋅ min{(m^{1+1/k})/T, m/(T^{2/(k+1)})}) for each fixed k ≥ 3, in order to guarantee an estimate within (1±ε)T_k(H) with probability ≥ 1-δ. We also give a simpler 1-pass algorithm that achieves O(ε^{-2} log δ^{-1} log n⋅ (m/T) (Δ_E + Δ_V^{1-1/k})) space, where Δ_E (respectively, Δ_V) denotes the maximum number of k-simplices that share a hyperedge (respectively, a vertex), which generalizes a previous result for the k = 2 case. We complement these algorithmic results with space lower bounds of the form Ω(ε^{-2}), Ω(m^{1+1/k}/T), Ω(m/T^{1-1/k}) and Ω(mΔ_V^{1/k}/T) for multi-pass algorithms and Ω(mΔ_E/T) for 1-pass algorithms, which show that some of the dependencies on parameters in our upper bounds are nearly tight. Our techniques extend and generalize several different ideas previously developed for triangle counting in graphs, using appropriate innovations to handle the more complicated combinatorics of hypergraphs.more » « less
- 
            We consider hypergraph visualization that represent vertices as points and hyperedges as lines with few bends passing through points of their incident vertices. Guided by point-line incidence theory we show several theoretical results: if every vertex is part of at most two hyperedges, then we can find such a visualization without bends. There exist hypergraphs with three vertices per hyperedge and three hyperedges incident to each vertex requiring an arbitrary number of bends. It is ETR-hard to decide whether an arbitrary hypergraph can be visualized without bends. This only answers some interesting questions for such visualizations and we conclude with many open research questions.more » « less
- 
            Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)Recently, a number of variants of the notion of cut-preserving hypergraph sparsification have been studied in the literature. These variants include directed hypergraph sparsification, submodular hypergraph sparsification, general notions of approximation including spectral approximations, and more general notions like sketching that can answer cut queries using more general data structures than just sparsifiers. In this work, we provide reductions between these different variants of hypergraph sparsification and establish new upper and lower bounds on the space complexity of preserving their cuts. Specifically, we show that: 1) (1 ± ε) directed hypergraph spectral (respectively cut) sparsification on n vertices efficiently reduces to (1 ± ε) undirected hypergraph spectral (respectively cut) sparsification on n² + 1 vertices. Using the work of Lee and Jambulapati, Liu, and Sidford (STOC 2023) this gives us directed hypergraph spectral sparsifiers with O(n² log²(n) / ε²) hyperedges and directed hypergraph cut sparsifiers with O(n² log(n)/ ε²) hyperedges by using the work of Chen, Khanna, and Nagda (FOCS 2020), both of which improve upon the work of Oko, Sakaue, and Tanigawa (ICALP 2023). 2) Any cut sketching scheme which preserves all cuts in any directed hypergraph on n vertices to a (1 ± ε) factor (for ε = 1/(2^{O(√{log(n)})})) must have worst-case bit complexity n^{3 - o(1)}. Because directed hypergraphs are a subclass of submodular hypergraphs, this also shows a worst-case sketching lower bound of n^{3 - o(1)} bits for sketching cuts in general submodular hypergraphs. 3) (1 ± ε) monotone submodular hypergraph cut sparsification on n vertices efficiently reduces to (1 ± ε) symmetric submodular hypergraph sparsification on n+1 vertices. Using the work of Jambulapati et. al. (FOCS 2023) this gives us monotone submodular hypergraph sparsifiers with Õ(n / ε²) hyperedges, improving on the O(n³ / ε²) hyperedge bound of Kenneth and Krauthgamer (arxiv 2023). At a high level, our results use the same general principle, namely, by showing that cuts in one class of hypergraphs can be simulated by cuts in a simpler class of hypergraphs, we can leverage sparsification results for the simpler class of hypergraphs.more » « less
- 
            Recently, a number of variants of the notion of cut-preserving hypergraph sparsification have been studied in the literature. These variants include directed hypergraph sparsification, submodular hypergraph sparsification, general notions of approximation including spectral approximations, and more general notions like sketching that can answer cut queries using more general data structures than just sparsifiers. In this work, we provide reductions between these different variants of hypergraph sparsification and establish new upper and lower bounds on the space complexity of preserving their cuts. Specifically, we show that: 1) (1 ± ε) directed hypergraph spectral (respectively cut) sparsification on n vertices efficiently reduces to (1 ± ε) undirected hypergraph spectral (respectively cut) sparsification on n² + 1 vertices. Using the work of Lee and Jambulapati, Liu, and Sidford (STOC 2023) this gives us directed hypergraph spectral sparsifiers with O(n² log²(n) / ε²) hyperedges and directed hypergraph cut sparsifiers with O(n² log(n)/ ε²) hyperedges by using the work of Chen, Khanna, and Nagda (FOCS 2020), both of which improve upon the work of Oko, Sakaue, and Tanigawa (ICALP 2023). 2) Any cut sketching scheme which preserves all cuts in any directed hypergraph on n vertices to a (1 ± ε) factor (for ε = 1/(2^{O(√{log(n)})})) must have worst-case bit complexity n^{3 - o(1)}. Because directed hypergraphs are a subclass of submodular hypergraphs, this also shows a worst-case sketching lower bound of n^{3 - o(1)} bits for sketching cuts in general submodular hypergraphs. 3) (1 ± ε) monotone submodular hypergraph cut sparsification on n vertices efficiently reduces to (1 ± ε) symmetric submodular hypergraph sparsification on n+1 vertices. Using the work of Jambulapati et. al. (FOCS 2023) this gives us monotone submodular hypergraph sparsifiers with Õ(n / ε²) hyperedges, improving on the O(n³ / ε²) hyperedge bound of Kenneth and Krauthgamer (arxiv 2023). At a high level, our results use the same general principle, namely, by showing that cuts in one class of hypergraphs can be simulated by cuts in a simpler class of hypergraphs, we can leverage sparsification results for the simpler class of hypergraphs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
