Machine learning (ML) methods are increasingly being applied to analyze biological signals. For example, ML methods have been successfully applied to the human electroencephalogram (EEG) to classify neural signals as pathological or non-pathological and to predict working memory performance in healthy and psychiatric patients. ML approaches can quickly process large volumes of data to reveal patterns that may be missed by humans. This study investigated the accuracy of ML methods at classifying the brain’s electrical activity to cognitive events, i.e., event-related brain potentials (ERPs). ERPs are extracted from the ongoing EEG and represent electrical potentials in response to specific events. ERPs were evoked during a visual Go/NoGo task. The Go/NoGo task requires a button press on Go trials and response withholding on NoGo trials. NoGo trials elicit neural activity associated with inhibitory control processes. We compared the accuracy of six ML algorithms at classifying the ERPs associated with each trial type. The raw electrical signals were fed to all ML algorithms to build predictive models. The same raw data were then truncated in length and fitted to multiple dynamic state space models of order nx using a continuous-time subspace-based system identification algorithm. The 4nx numerator and denominator parameters of the transfer function of the state space model were then used as substitutes for the data. Dimensionality reduction simplifies classification, reduces noise, and may ultimately improve the predictive power of ML models. Our findings revealed that all ML methods correctly classified the electrical signal associated with each trial type with a high degree of accuracy, and accuracy remained high after parameterization was applied. We discuss the models and the usefulness of the parameterization. 
                        more » 
                        « less   
                    This content will become publicly available on January 21, 2026
                            
                            A microservices architecture for processing large electroencephalogram studies
                        
                    
    
            Electrical signatures characteristic of complex neurological activity and neuropsychiatric disease are embedded in electroencephalography (EEG) signal data. To firmly establish new correlations between these brain electrical pulses and cognition, behavior, and disorders, researchers must achieve adequate statistical power to validate and mitigate uncertainties in their findings. This necessitates the usage of extensive studies involving large volumes of raw EEG data files from multiple subjects, data which must be preprocessed before conducting further analysis. While conventional processing and analysis of these raw data have been performed using isolated physical lab environments and stovepiped applications, there is a growing necessity for processing and analysis solutions that enable distributed processing of large data collections. This study presents a novel microservices approach as an alternative and complementary solution for retrieving and preprocessing EEG signal data. The approach leverages serverless technologies to deliver a highly scalable solution for processing massive amounts of EEG data. Deployed within a public cloud environment, we assess the efficacy of this method when employing various container orchestration configurations. This work demonstrates the capability for substantial enhancements in processing speeds, particularly when dealing with extensive EEG datasets. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2219634
- PAR ID:
- 10634660
- Publisher / Repository:
- Taylor & Francis
- Date Published:
- Journal Name:
- International Journal of Computers and Applications
- Volume:
- 47
- Issue:
- 3
- ISSN:
- 1206-212X
- Page Range / eLocation ID:
- 329 to 338
- Subject(s) / Keyword(s):
- Electroencephalography,Serverless,Microservice,SaaS,Big Data
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            In recent years, the use of convolutional neural networks (CNNs) for raw resting-state electroencephalography (EEG) analysis has grown increasingly common. However, relative to earlier machine learning and deep learning methods with manually extracted features, CNNs for raw EEG analysis present unique problems for explainability. As such, a growing group of methods have been developed that provide insight into the spectral features learned by CNNs. However, spectral power is not the only important form of information within EEG, and the capacity to understand the roles of specific multispectral waveforms identified by CNNs could be very helpful. In this study, we present a novel model visualization-based approach that adapts the traditional CNN architecture to increase interpretability and combines that inherent interpretability with a systematic evaluation of the modelviaa series of novel explainability methods. Our approach evaluates the importance of spectrally distinct first-layer clusters of filters before examining the contributions of identified waveforms and spectra to cluster importance. We evaluate our approach within the context of automated sleep stage classification and find that, for the most part, our explainability results are highly consistent with clinical guidelines. Our approach is the first to systematically evaluate both waveform and spectral feature importance in CNNs trained on resting-state EEG data.more » « less
- 
            Even though human experience unfolds continuously in time, it is not strictly linear; instead, it entails cascading processes building hierarchical cognitive structures. For instance, during speech perception, humans transform a continuously varying acoustic signal into phonemes, words, and meaning, and these levels all have distinct but interdependent temporal structures. Time-lagged regression usingtemporal response functions (TRFs) has recently emerged as a promising tool for disentangling electrophysiological brain responses related to such complex models of perception. Here, we introduce the Eelbrain Python toolkit, which makes this kind of analysis easy and accessible. We demonstrate its use, using continuous speech as a sample paradigm, with a freely available EEG dataset of audiobook listening. A companion GitHub repository provides the complete source code for the analysis, from raw data to group-level statistics. More generally, we advocate a hypothesis-driven approach in which the experimenter specifies a hierarchy of time-continuous representations that are hypothesized to have contributed to brain responses, and uses those as predictor variables for the electrophysiological signal. This is analogous to a multiple regression problem, but with the addition of a time dimension. TRF analysis decomposes the brain signal into distinct responses associated with the different predictor variables by estimating a multivariate TRF (mTRF), quantifying the influence of each predictor on brain responses as a function of time(-lags). This allows asking two questions about the predictor variables: (1) Is there a significant neural representation corresponding to this predictor variable? And if so, (2) what are the temporal characteristics of the neural response associated with it? Thus, different predictor variables can be systematically combined and evaluated to jointly model neural processing at multiple hierarchical levels. We discuss applications of this approach, including the potential for linking algorithmic/representational theories at different cognitive levels to brain responses through computational models with appropriate linking hypotheses.more » « less
- 
            null (Ed.)The goal of this report is to describe to users of the TUH EEG Corpus four important concepts that must be understood to correctly retrieve EEG signals from a data file (e.g., an EDF file). The four key concepts described in this document are: (1) physical placement: the location of the electrodes on the scalp, (2) unipolar montage: the differential recording process used to reduce noise, (3) channel labels: the system used to describe the channels, or digital signals, represented in a computer file and (4) bipolar montages: the differential mapping used to accentuate clinically-relevant events in the signal. This report is not intended to be a primer on the electrophysiology of an EEG, which is a subject unto itself, or a tutorial on how neurologists interpret EEGs. This report simply explains how the signal data in an EEG file must be accessed to accurately support clinical applications (e.g., manual interpretation or annotation of an EEG) and research applications (e.g., automatic interpretation using machine learning).more » « less
- 
            To fully understand brain processes in the real world, it is necessary to record and quantitatively analyse brain processes during real world human experiences. Mobile electroencephalography (EEG) and physiological data sensors provide new opportunities for studying humans outside of the laboratory. The purpose of this study was to document data from high-density EEG and mobile physiological sensors while humans performed a visual search task both on a treadmill in a laboratory setting and overground in a natural outdoor setting. The data set includes 49 young, healthy participants on an outdoor arboretum path and on a treadmill in a laboratory with a large virtual reality screen. The data provide a valuable research tool for scientists interested in signal processing, electrocortical brain processes, mobile brain imaging, and brain-computer interfaces based on mobile EEG. Given the comparison data between laboratory and real world conditions, researchers can test the viability of new processing algorithms across conditions or investigate changes in electrocortical activity related to behavioural dynamics coded into the data.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
