This content will become publicly available on April 16, 2026
Diversifying fluoroalkanes: light-driven fluoroalkyl transfer via vinylboronate esters
A metal-free strategy to access tertiary difluoromethylene-containing molecules from RCF2H (R = aryl, H, F) precursors, vinyl-pinacol boronic ester (BPin) reagents, and proradical reagents is reported.
more »
« less
- Award ID(s):
- 1955284
- PAR ID:
- 10634758
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 16
- Issue:
- 16
- ISSN:
- 2041-6520
- Page Range / eLocation ID:
- 6975 to 6981
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Organic azides have found wide application in various fields of science and technology. This review summarizes recently developed approaches to the direct, one‐step synthesis of diverse organic azides utilizing hypervalent iodine reagents. The first part of review deals with the azidation using unstable azidoiodinanes generatedin situfrom common hypervalent iodine reagents (such as diacetoxyiodobenzene or iodosylbenzene) and a source of azide anion (TMSN3or NaN3). The second part of review is dedicated to the application of stable azidobenziodoxoles as useful azidating reagents that allow selective direct azidation of C−H bonds or double carbon‐carbon bonds under mild reaction conditions. The use of azidobenziodoxoles eliminates the main disadvantages of the traditional approaches to organic azides, such as the need in pre‐functionalization of organic substrates and harsh reaction conditions. Synthetic application of azidobenziodoxoles made possible direct selective azidation of a plethora of organic substrates including complex molecules at the late synthetic stage.more » « less
-
Abstract In principal, the direct copolymerization of ethylene with polar comonomers should be the most efficient means to introduce functional groups into conventional polyolefins but remains a formidable challenge. Despite the tremendous advances in group 4‐centered catalysis for olefin polymerization, successful examples of ethylene + polar monomer copolymerization are rare, especially without Lewis acidic masking reagents. Here we report that certain group 4 catalysts are very effective for ethylene + CH2=CH(CH2)nNR2copolymerizations with activities up to 3400 Kg copolymer mol−1‐Zr h‐1 atm‐1, and with comonomer enchainment up to 5.5 mol % in the absence of masking reagents. Group 4 catalyst‐amino‐olefin structure–activity‐selectivity relationships reflect the preference of olefin activation over free amine coordination, which is supported by mechanistic experiments and DFT analysis. These results illuminate poorly understood facets of d0metal‐catalyzed polar olefin monomer copolymerization processes.more » « less
-
Crystals of the title salt, (C8H20N)[Sn(C6H5)3(C2H2O2S)], comprise diisobutylammonium cations and mercaptoacetatotriphenylstannate(IV) anions. The bidentate binding mode of the mercaptoacetate ligand gives rise to a five-coordinated, ionic triphenyltin complex with a distortedcis-trigonal–bipyramidal geometry around the tin atom. In the crystal, charge-assisted ammonium-N—H...O(carboxylate) hydrogen-bonding connects two cations and two anions into a four-ion aggregate. Two positions were resolved for one of the phenyl rings with the major component having a site occupancy factor of 0.60 (3).more » « less
-
Abstract Hypervalent iodine compounds have found broad application in modern organic chemistry as reagents and catalysts. Cyclic hypervalent iodine reagents based on the benziodoxole heterocyclic system have higher stability compared to their acyclic analogues, which makes possible the preparation and safe handling of the reagents with special ligands such as azido, cyano, and trifluoromethyl groups. Numerous iodine‐substituted benziodoxole derivatives have been prepared and utilized as reagents for transfer of the substituent on hypervalent iodine to organic substrate. Reactions of these reagents with organic substrates can be performed under metal‐free conditions, in the presence of transition metal catalysts, or using photocatalysts under photoirradiation conditions. In this review, we focus on the most recent synthetic applications of cyclic hypervalent iodine(III) reagents with the following ligands: N3, NHR, CN, CF3, SCF3, OR, OAc, ONO2, and C(=N2)CO2R. The review covers literature published mainly in the last 5 years.more » « less
An official website of the United States government
