skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simulation of Uterus Active Contraction and Fetus Delivery in ls-dyna
Abstract Vaginal childbirth is the final phase of pregnancy when one or more fetuses pass through the birth canal from the uterus, and it is a biomechanical process. The uterine active contraction, causing the pushing force on the fetus, plays a vital role in regulating the fetus delivery process. In this project, the active contraction behaviors of muscle tissue were first modeled and investigated. After that, a finite element method (FEM) model to simulate the uterine cyclic active contraction and delivery of a fetus was developed in ls-dyna. The active contraction was driven through contractile fibers modeled as one-dimensional truss elements, with the Hill material model governing their response. Fibers were assembled in the longitudinal, circumferential, and normal (transverse) directions to correspond to tissue microstructure, and they were divided into seven regions to represent the strong anisotropy of the fiber distribution and activity within the uterus. The passive portion of the uterine tissue was modeled with a Neo Hookean hyperelastic material model. Three active contraction cycles were modeled. The cyclic uterine active contraction behaviors were analyzed. Finally, the fetus delivery through the uterus was simulated. The model of the uterine active contraction presented in this paper modeled the contractile fibers in three-dimensions, considered the anisotropy of the fiber distribution, provided the uterine cyclic active contraction and propagation of the contraction waves, performed a large deformation, and caused the pushing effect on the fetus. This model will be combined with a model of pelvic structures so that a complete system simulating the second stage of the delivery process of a fetus can be established.  more » « less
Award ID(s):
2028474
PAR ID:
10635068
Author(s) / Creator(s):
;
Publisher / Repository:
ASME
Date Published:
Journal Name:
Journal of Biomechanical Engineering
Volume:
146
Issue:
10
ISSN:
0148-0731
Page Range / eLocation ID:
101002-1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Childbirth or labor, as the final phase of a pregnancy, is a biomechanical process that delivers the fetus from the uterus. It mainly involves two important biological structures in the mother, the uterus—generating the pushing force on the fetus—and the pelvis (bony pelvis and pelvic floor muscles)—resisting the movement of the fetus. The existing computational models developed in this field that simulate the childbirth process have focused on either the uterine expulsion force or the resistive structures of the pelvis, not both. An FEM model including both structures as a system was developed in this paper to simulate the fetus delivery process in ls-dyna. Uterine active contraction was driven by contractile fiber elements using the Hill material model. The passive portion of the uterus and pelvic floor muscles were modeled with Neo Hookean and Mooney–Rivlin materials, respectively. The bony pelvis was modeled as a rigid body. The fetus was divided into three components: the head, neck, and body. Three uterine active contraction cycles were modeled. The model system was validated based on multiple outputs from the model, including the stress distribution within the uterus, the maximum Von Mises and principal stress on the pelvic floor muscles, the duration of the second stage of the labor, and the movement of the fetus. The developed model system can be applied to investigate the effects of pathomechanics related to labor, such as pelvic floor disorders and brachial plexus injury. 
    more » « less
  2. Preterm labor is a prevalent public health problem and occurs when the myometrium, the smooth muscle layer of the uterus, begins contracting before the fetus reaches full term. Abnormal contractions of the myometrium also underlie painful menstrual cramps, known as dysmenorrhea. Both disorders have been associated with increased production of prostaglandins and cytokines, yet the functional impacts of inflammatory mediators on the contractility of human myometrium have not been fully established, in part due to a lack of effective model systems. To address this, we engineered human myometrial microtissues (μmyometrium) on compliant hydrogels designed for traction force microscopy. We then measured μmyometrium contractility in response to a panel of compounds with known contractile effects and inflammatory mediators. We observed that prostaglandin F2α, interleukin 6, and interleukin 8 induced contraction, while prostaglandin E1 and prostaglandin E2 induced relaxation. Our data suggest that inflammation may be a key factor modulating uterine contractility in conditions including, but not limited to, preterm labor or dysmenorrhea. More broadly, our μmyometrium model can be used to systematically identify the functional impact of many small molecules on human myometrium. 
    more » « less
  3. The reproductive system of the hermaphroditic nematode C. elegans consists of a series of contractile cell types—including the gonadal sheath cells, the spermathecal cells and the spermatheca–uterine valve—that contract in a coordinated manner to regulate oocyte entry and exit of the fertilized embryo into the uterus. Contraction is driven by acto-myosin contraction and relies on the development and maintenance of specialized acto-myosin networks in each cell type. Study of this system has revealed insights into the regulation of acto-myosin network assembly and contractility in vivo. 
    more » « less
  4. Abstract Tuning of genome structure and function is accomplished by chromatin-binding proteins, which determine the transcriptome and phenotype of the cell. Here we investigate how communication between extracellular stress and chromatin structure may regulate cellular mechanical behaviors. We demonstrate that histone H1.0, which compacts nucleosomes into higher-order chromatin fibers, controls genome organization and cellular stress response. We show that histone H1.0 has privileged expression in fibroblasts across tissue types and that its expression is necessary and sufficient to induce myofibroblast activation. Depletion of histone H1.0 prevents cytokine-induced fibroblast contraction, proliferation and migration via inhibition of a transcriptome comprising extracellular matrix, cytoskeletal and contractile genes, through a process that involves locus-specific H3K27 acetylation. Transient depletion of histone H1.0 in vivo prevents fibrosis in cardiac muscle. These findings identify an unexpected role of linker histones to orchestrate cellular mechanical behaviors, directly coupling force generation, nuclear organization and gene transcription. 
    more » « less
  5. Abstract Uterine cancer is the fourth most common cancer among women, projected to affect 66,000 US women in 2021. Uterine cancer often arises in the inner lining of the uterus, known as the endometrium, but can present as several different types of cancer, including endometrioid cancer, serous adenocarcinoma, and uterine carcinosarcoma. Previous studies have analyzed the genetic changes between normal and cancerous uterine tissue to identify specific genes of interest, including TP53 and PTEN. Here we used Gaussian Mixture Models to build condition-specific gene coexpression networks for endometrial cancer, uterine carcinosarcoma, and normal uterine tissue. We then incorporated uterine regulatory edges and investigated potential coregulation relationships. These networks were further validated using differential expression analysis, functional enrichment, and a statistical analysis comparing the expression of transcription factors and their target genes across cancerous and normal uterine samples. These networks allow for a more comprehensive look into the biological networks and pathways affected in uterine cancer compared with previous singular gene analyses. We hope this study can be incorporated into existing knowledge surrounding the genetics of uterine cancer and soon become clinical biomarkers as a tool for better prognosis and treatment. 
    more » « less