Predicting workload behavior during workload execution is essential for dynamic resource optimization in multi-processor systems. Recent studies have proposed advanced machine learning techniques for dynamic workload prediction. Workload prediction can be cast as a time series forecasting problem. However, traditional forecasting models struggle to predict abrupt workload changes. These changes occur because workloads are known to go through phases. Prior work has investigated machine learning-based approaches for phase detection and prediction, but such approaches have not been studied in the context of dynamic workload forecasting. In this paper, we propose phase-aware CPU workload forecasting as a novel approach that applies long-term phase prediction to improve the accuracy of short-term workload forecasting. Phase-aware forecasting requires machine learning models for phase classification, phase prediction, and phase-based forecasting that have not been explored in this combination before. Furthermore, existing prediction approaches have only been studied in single-core settings. This work explores phase-aware workload forecasting with multi-threaded workloads running on multi-core systems. We propose different multi-core settings differentiated by the number of cores they access and whether they produce specialized or global outputs per core. We study various advanced machine learning models for phase classification, phase prediction, and phase-based forecasting in isolation and different combinations for each setting. We apply our approach to forecasting of multi-threaded Parsec and SPEC workloads running on an 8-core Intel Core-i9 platform. Our results show that combining GMM clustering with LSTMs for phase prediction and phase-based forecasting yields the best phase-aware forecasting results. An approach that uses specialized models per core achieves an average error of 23% with up to 22% improvement in prediction accuracy compared to a phase-unaware setup.
more »
« less
This content will become publicly available on June 2, 2026
Crafting the Future: Machine learning for ocean forecasting
Artificial intelligence and machine learning are accelerating research in Earth system science, with huge potential for impact and challenges in ocean prediction. Such algorithms are being deployed on different aspects of the forecasting workflow with the aim of improving its speed and skill. They include pattern classification and anomaly detection; regression and diagnostics; and state prediction from nowcasting to synoptic, sub-seasonal, and seasonal forecasting. This brief review emphasizes scientific machine learning methods that have the capacity to embed domain knowledge; to ensure interpretability through causal explanation, to be robust and reliable; to involve effectively high-dimensional statistical methods, supporting multi-scale and multi-physics simulations aimed at improving parameterization; and to drive intelligent automation, as well as decision support. An overview of recent numerical developments is discussed, highlighting the importance of fully data-driven ocean models for future expansion of ocean forecasting capabilities.
more »
« less
- Award ID(s):
- 2103942
- PAR ID:
- 10635285
- Editor(s):
- -
- Publisher / Repository:
- Copernicus
- Date Published:
- Journal Name:
- State of the planet
- ISSN:
- 2752-0706
- Subject(s) / Keyword(s):
- -
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Arctic amplification has altered the climate patterns both regionally and globally, resulting in more frequent and more intense extreme weather events in the past few decades. The essential part of Arctic amplification is the unprecedented sea ice loss as demonstrated by satellite observations. Accurately forecasting Arctic sea ice from sub-seasonal to seasonal scales has been a major research question with fundamental challenges at play. In addition to physics-based Earth system models, researchers have been applying multiple statistical and machine learning models for sea ice forecasting. Looking at the potential of data-driven approaches to study sea ice variations, we propose MT-IceNet – a UNet-based spatial and multi-temporal (MT) deep learning model for forecasting Arctic sea ice concentration (SIC). The model uses an encoder-decoder architecture with skip connections and processes multi-temporal input streams to regenerate spatial maps at future timesteps. Using bi-monthly and monthly satellite retrieved sea ice data from NSIDC as well as atmospheric and oceanic variables from ERA5 reanalysis product during 1979-2021, we show that our proposed model provides promising predictive performance for per-pixel SIC forecasting with up to 60% decrease in prediction error for a lead time of 6 months as compared to its state-of-the-art counterparts.more » « less
-
Abstract Seasonal‐to‐decadal climate prediction is crucial for decision‐making in a number of industries, but forecasts on these timescales have limited skill. Here, we develop a data‐driven method for selecting optimal analogs for seasonal‐to‐decadal analog forecasting. Using an interpretable neural network, we learn a spatially‐weighted mask that quantifies how important each grid point is for determining whether two climate states will evolve similarly. We show that analogs selected using this weighted mask provide more skillful forecasts than analogs that are selected using traditional spatially‐uniform methods. This method is tested on two prediction problems using the Max Planck Institute for Meteorology Grand Ensemble: multi‐year prediction of North Atlantic sea surface temperatures, and seasonal prediction of El Niño Southern Oscillation. This work demonstrates a methodical approach to selecting analogs that may be useful for improving seasonal‐to‐decadal forecasts and understanding their sources of skill.more » « less
-
Despite major improvements in weather and climate modelling and substantial increases in remotely sensed observations, drought prediction remains a major challenge. After a review of the existing methods, we discuss major research gaps and opportunities to improve drought prediction. We argue that current approaches are top-down, assuming that the process(es) and/or driver(s) are known—i.e. starting with a model and then imposing it on the observed events (reality). With the help of an experiment, we show that there are opportunities to develop bottom-up drought prediction models—i.e. starting from the reality (here, observed events) and searching for model(s) and driver(s) that work. Recent advances in artificial intelligence and machine learning provide significant opportunities for developing bottom-up drought forecasting models. Regardless of the type of drought forecasting model (e.g. machine learning, dynamical simulations, analogue based), we need to shift our attention to robustness of theories and outputs rather than event-based verification. A shift in our focus towards quantifying the stability of uncertainty in drought prediction models, rather than the goodness of fit or reproducing the past, could be the first step towards this goal. Finally, we highlight the advantages of hybrid dynamical and statistical models for improving current drought prediction models. This article is part of the Royal Society Science+ meeting issue ‘Drought risk in the Anthropocene’.more » « less
-
Abstract. Machine learning is quickly becoming a commonly used technique for wind speed and power forecasting. Many machine learning methods utilize exogenous variables as input features, but there remains the question of which atmospheric variables are most beneficial for forecasting, especially in handling non-linearities that lead to forecasting error. This question is addressed via creation of a hybrid model that utilizes an autoregressive integrated moving-average (ARIMA) model to make an initial wind speed forecast followed by a random forest model that attempts to predict the ARIMA forecasting error using knowledge of exogenous atmospheric variables.Variables conveying information about atmospheric stability and turbulence as well as inertial forcing are found to be useful in dealing with non-linear error prediction. Streamwise wind speed, time of day, turbulence intensity, turbulent heat flux, vertical velocity, and wind direction are found to be particularly useful when used in unison for hourly and 3 h timescales. The prediction accuracy of the developed ARIMA–random forest hybrid model is compared to that of the persistence and bias-corrected ARIMA models. The ARIMA–random forest model is shown to improve upon the latter commonly employed modeling methods, reducing hourly forecasting error by up to 5 % below that of the bias-corrected ARIMA model and achieving an R2 value of 0.84 with true wind speed.more » « less
An official website of the United States government
