skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2026

Title: Temporal and Spatial Analysis of Freezing Rain Regimes over Eastern North America
Freezing rain events, which have caused billions of dollars in damage in recent decades, are still one of the least understood forms of precipitation. These events affect both urban and rural regions, including cities and forests. However, the often short-lived and sporadic occurrence of these events poses significant challenges to accurate reporting, complicating analysis attempting to fill this knowledge gap. Through the utilization of ERA5 reanalysis from 1979 to 2020 as a proxy for lacking ground truth data, freezing rain events were identified and analyzed throughout eastern North America. These events were then sorted into full area and subarea regimes through a multivariate self-organizing map (SOM) analysis. This classification of regimes and their subsequent analysis showed the varying importances of the initial synoptic states of each event and provide examples of distinct synoptic structures associated with freezing rain events impacting different regions of eastern North America. In addition, our regime classification identified the prevalence of extreme events associated with each regime. This SOM approach can also be configured to more regional scales to provide more granularity to specific regions of eastern North America.  more » « less
Award ID(s):
2110243
PAR ID:
10635610
Author(s) / Creator(s):
;
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Applied Meteorology and Climatology
Volume:
64
Issue:
9
ISSN:
1558-8424
Page Range / eLocation ID:
1177 to 1190
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Flash flooding in the arid/semiarid southwestern United States is frequently associated with convective rainfall during the North American monsoon. In this study, we examine flood-producing storms in central Arizona based on analyses of dense rain gauge observations and stream gauging records as well as North American Regional Reanalysis fields. Our storm catalog consists of 102 storm events during the period of 1988–2014. Synoptic conditions for flood-producing storms are characterized based on principal component analyses. Four dominant synoptic modes are identified, with the first two modes explaining approximately 50% of the variance of the 500-hPa geopotential height. The transitional synoptic pattern from the North American monsoon regime to midlatitude systems is a critical large-scale feature for extreme rainfall and flooding in central Arizona. Contrasting spatial rainfall organizations and storm environment under the four synoptic modes highlights the role of interactions among synoptic conditions, mesoscale processes, and complex terrains in determining space–time variability of convective activities and flash flood hazards in central Arizona. We characterize structure and evolution properties of flood-producing storms based on storm tracking algorithms and 3D radar reflectivity. Fast-moving storm elements can be important ingredients for flash floods in the arid/semiarid southwestern United States. Contrasting storm properties for cloudburst storms highlight the wide spectrum of convective intensities for extreme rain rates in the arid/semiarid southwestern United States and exhibit comparable vertical structures to their counterparts in the eastern United States. 
    more » « less
  2. Abstract Previous studies have suggested possible connections between the decreasing Arctic sea‐ice and long‐duration (>5 days, LD) cold weather events in Eurasia and North America. Here we document the occurrences of weather regimes in winter by their durations, based on the empirical orthogonal function analyses of the daily geopotential height fields at 500 hPa (z500) for the months of November–March 1979–2019. Significant changes in the occurrence frequency and persistence of Ural ridge (UR) and weak stratospheric polar vortex (PV) were found between winters following high and low autumn sea‐ice covers (SIC) in the Barents and Kara seas. It is shown that a strengthening of the UR is accompanied with a weakening of the PV, and a weak PV favors Greenland ridge (GR). Cold spells in East Asia persist for 5 more days after an LDUR. Cold spells from Canada to the U.S. occur 2–5 days after an LD Ural trough (UT) and are associated with a z500 anomaly dipole centered over Alaska (+) and Hudson Bay (−). Cold spells in the eastern U.S. occur 1–4 days after an LDGR due to circulations resembling the Pacific‐North America pattern. Increased occurrences of UR in winter are associated with a decreased eastward propagation of synoptic waves from the North Atlantic to Japan and the North Pacific. 
    more » « less
  3. Abstract The first 2 weeks of December 2021 were exceptionally active for severe convective storms across the central and eastern United States. While previous work has indicated that this was related to the existence of a negative phase of the Pacific–North American pattern, we demonstrate that such a pattern was configured via dynamical linkages between multiple extratropical cyclogenesis events in the western North Pacific, the recurvature of Typhoon Nyatoh, and the subsequent phase evolution of the North Pacific jet. These processes were found to aid in the excitation of Rossby wave packets and the amplification of upper-level flow downstream over the Pacific, ultimately configuring synoptic-scale weather regimes supportive of anomalous high-frequency and high-intensity severe convective weather in the contiguous United States. In addition, abnormally warm Gulf of America/Gulf of Mexico sea surface temperatures, aided by a period of antecedent synoptic-scale subsidence, played a critical role in enhancing convective instability in the surface warm sector. This work underscores the importance of cataloging these events for purposes of examining (and potentially enhancing) predictability. Significance StatementThe first half of December 2021 recorded one of the most active cool-season severe weather periods in the United States, resulting in two billion-dollar convective outbreaks on 10 and 15 December. This study links these extreme events to upstream dynamical processes over the North Pacific, including extratropical cyclogenesis, the recurvature of Typhoon Nyatoh, and the retraction of the North Pacific jet. These processes amplified downstream flow and configured synoptic environments favorable for severe weather across the United States. Additionally, anomalously warm Gulf of America/Gulf of Mexico sea surface temperatures enhanced convective instability. By identifying these key precursors, this work highlights the potential for improved anticipation of extended-range severe weather likelihood—particularly during the cool season—when such events remain rare but highly impactful. 
    more » « less
  4. Intense precipitation events (IPE; 99th percentile) in the southeastern United States from 1950 to 2016 were analysed temporally, spatially, and synoptically. The study area was partitioned into latitudinal and physiographic regions to identify subregions that experienced significant changes in IPE frequency or intensity. Furthermore, the spatial synoptic classification (SSC) was used to ascertain what surface weather types are associated with IPEs. Additionally, in conjunction with the SSC, surface forcing mechanisms for the 30 most extreme subregional IPEs were studied to uncover the surface synoptic conditions responsible for IPEs. Results revealed that IPEs increased in frequency and intensity on an annual basis for the southeastern United States. Seasonal results indicated that IPE frequency only increased in the fall. Subregional results reveal that latitudinally, IPEs became more common in the northern latitudes of the study area, while physiographically, significant increases in IPE frequency were most pronounced in areas inland from the Atlantic Coastal Plain. An increase in the annual number of IPEs associated with moist tropical (MT) days was identified across the study area, but was more prevalent in the central and north central latitudinal regions, and areas inland from the Atlantic Coastal Plain outside of the Appalachian Mountains. This MT increase was possibly caused by more common northwards and inland intrusion of these types of IPEs. While moist moderate (MM) and transitional (TR) days were most commonly associated with IPEs, these weather types did not have significant trends. The surface forcing mechanisms most commonly associated with the strongest IPEs were tropical events, followed by stationary fronts and concentric low‐pressure systems. 
    more » « less
  5. Abstract North American cold air outbreaks (CAOs) are large-scale temperature extremes that typically originate in the high latitudes and impact the midlatitudes in winter. As they transit southward, they can have significant socioeconomic consequences. CAOs from winter (DJF) 1979 to 2020 were identified in the fifth major global reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ERA5) using an automated feature tracking approach (TempestExtremesV2.1). This allowed for the systematic identification of a large number of cases without using predetermined, Eulerian regions. Another important advantage of this approach was the ability to compute a feature tracked thermodynamic energy budget in a nonfixed domain for every identified CAO event. As an example, the thermodynamic energy budget analysis was used to quantify important processes for the 18–23 January 1985 CAO. The dominant mechanisms of cooling and warming as well as lysis locations (i.e., eastern or western) were then used to generalize detected CAO events into subcategories. The associated statistics, spatial footprints, and composites of 500-hPa height, sea level pressure, and temperature and winds at 850 hPa were analyzed for three subcategories that contained the majority of events. This analysis revealed that CAO events that form and dissipate through different mechanisms occur in different regions, have different intensities, and are associated with different large-scale circulation patterns. Finally, the analysis of associated North Atlantic Oscillation (NAO) and Pacific–North American (PNA) teleconnection pattern revealed that the PNA is typically in a positive phase for eastern CAO events and in a negative phase for western events resulting primarily from horizontal advection, whereas the NAO did not have any significant relationship. 
    more » « less